Skip to main content

Advancing Pancreas Segmentation in Multi-protocol MRI Volumes Using Hausdorff-Sine Loss Function

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2019)

Abstract

Computing pancreatic morphology in 3D radiological scans could provide significant insight about a medical condition. However, segmenting the pancreas in magnetic resonance imaging (MRI) remains challenging due to high inter-patient variability. Also, the resolution and speed of MRI scanning present artefacts that blur the pancreas boundaries between overlapping anatomical structures. This paper proposes a dual-stage automatic segmentation method: (1) a deep neural network is trained to address the problem of vague organ boundaries in high class-imbalanced data. This network integrates a novel loss function to rigorously optimise boundary delineation using the modified Hausdorff metric and a sinusoidal component; (2) Given a test MRI volume, the output of the trained network predicts a sequence of targeted 2D pancreas classes that are reconstructed as a volumetric binary mask. An energy-minimisation approach fuses a learned digital contrast model to suppress the intensities of non-pancreas classes, which, combined with the binary volume performs a refined segmentation in 3D while revealing dense boundary detail. Experiments are performed on two diverse MRI datasets containing 180 and 120 scans, in which the proposed approach achieves a mean Dice score of 84.1 ± 4.6% and 85.7 ± 2.3%, respectively. This approach is statistically stable and outperforms state-of-the-art methods on MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macauley, M., Percival, K., Thelwall, P.E., Hollingsworth, K.G., Taylor, R.: Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS ONE 10(5), 1–14 (2015)

    Article  Google Scholar 

  2. Omeri, A., et al.: Contour variations of the body and tail of the pancreas: evaluation with MDCT. J. Radiol. 35(6), 310–318 (2017)

    Google Scholar 

  3. Cai, J., Lu, L., Zhang, Z., Xing, F., Yang, L., Yin, Q.: Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 442–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_51

    Chapter  Google Scholar 

  4. Okada, T., et al.: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) ABD-MICCAI 2011. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28557-8_22

    Chapter  Google Scholar 

  5. Shimizu, A., Kimoto, T., Kobatake, H., Nawano, S., Shinozaki, K.: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int. J. Comput. Assist. Radiol. Surg. 5(1), 85–98 (2010)

    Article  Google Scholar 

  6. Okada, T., Linguraru, M.G., Hori, M., Summers, R., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med. Image Anal. 26, 1–18 (2015)

    Article  Google Scholar 

  7. Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. CoRR, abs/1707.04912 (2017)

    Google Scholar 

  8. Farag, A., Lu, L., Roth, H.R., Liu, J., Turkbey, E., Summers, R.M.: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Trans. Image 26(1), 386–399 (2017)

    Article  MathSciNet  Google Scholar 

  9. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:1511.00561 (2015)

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense V-Networks. IEEE Trans. Med. Imaging 37, 1822–1834 (2018)

    Article  Google Scholar 

  12. Asaturyan, H., Gligorievski, A., Villarini, B.: Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation. Comput. Med. Imaging Graph. 75, 1–13 (2019)

    Article  Google Scholar 

  13. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE ICCV, pp. 1395–1403 (2015)

    Google Scholar 

  14. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  15. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621 (2017)

  16. Asaturyan, H., Villarini, B.: Hierarchical framework for automatic pancreas segmentation in MRI using continuous max-flow and min-cuts approach. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 562–570. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_64

    Chapter  Google Scholar 

  17. Yuan, J., Bae, E., Tai, X.-C.: A study on continuous max-flow and min-cut approaches. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2217–2224 (2010)

    Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth Fourth International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  19. Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 234–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hykoush Asaturyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asaturyan, H., Thomas, E.L., Fitzpatrick, J., Bell, J.D., Villarini, B. (2019). Advancing Pancreas Segmentation in Multi-protocol MRI Volumes Using Hausdorff-Sine Loss Function. In: Suk, HI., Liu, M., Yan, P., Lian, C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32692-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32691-3

  • Online ISBN: 978-3-030-32692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics