Skip to main content

Quantifying Uncertainty of Deep Neural Networks in Skin Lesion Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11840))

Abstract

Deep neural networks are becoming the new standard for automated image classification and segmentation. Recently, such models are also gaining traction in the context of medical diagnosis. However, when using a neural network as a decision support tool, it is important to also quantify the (un)certainty regarding the outputs of the system. Current Bayesian techniques approximate the true predictive output distribution via sampling, and quantify the uncertainty based on the variance of the output samples. In this paper, we highlight the limitations of a variance based metric, and propose a novel uncertainty metric based on the overlap of the output distributions. We show that this yields promising results on the HAM10000 dataset for skin lesion classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  2. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424 (2015)

  3. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, January 2017. http://dx.doi.org/10.1038/nature21056

    Article  Google Scholar 

  4. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  7. Graves, A.: Practical variational inference for neural networks. In: Advances in Neural Information Processing Systems, pp. 2348–2356 (2011)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Kwon, Y., Won, J.H., Kim, B.J., Paik, M.C.: Uncertainty quantification using bayesian neural networks in classification: application to ischemic stroke lesion segmentation (2018)

    Google Scholar 

  12. Lee, J.G., et al.: Deep learning in medical imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017)

    Article  Google Scholar 

  13. Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 17816 (2017)

    Article  Google Scholar 

  14. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  16. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 655–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_74

    Chapter  Google Scholar 

  17. Ozdemir, O., Woodward, B., Berlin, A.A.: Propagating uncertainty in multi-stage bayesian convolutional neural networks with application to pulmonary nodule detection. arXiv preprint arXiv:1712.00497 (2017)

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Seebock, P., et al.: Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal OCT. IEEE Trans. Med. Imaging (2019)

    Google Scholar 

  21. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  23. Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)

    Article  Google Scholar 

  24. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  25. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. data 5, 180161 (2018)

    Article  Google Scholar 

  26. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work has been supported by Flanders Innovation & Entrepreneurship, by way of grant agreement HBC.2016.0436/HBC.2018.2028 (DermScan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Van Molle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Van Molle, P. et al. (2019). Quantifying Uncertainty of Deep Neural Networks in Skin Lesion Classification. In: Greenspan, H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures. CLIP UNSURE 2019 2019. Lecture Notes in Computer Science(), vol 11840. Springer, Cham. https://doi.org/10.1007/978-3-030-32689-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32689-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32688-3

  • Online ISBN: 978-3-030-32689-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics