Skip to main content

Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures (CLIP 2019, UNSURE 2019)

Abstract

Although deep networks have been shown to perform very well on a variety of tasks, inference in the presence of pathology in medical images presents challenges to traditional networks. Given that medical image analysis typically requires a sequence of inference tasks to be performed (e.g. registration, segmentation), this results in an accumulation of errors over the sequence of deterministic outputs. In this paper, we explore the premise that, by embedding uncertainty estimates across cascaded inference tasks, the final prediction results should improve over simply cascading the deterministic classification results or performing inference in a single stage. Specifically, we develop a deep learning framework that propagates voxel-based uncertainty measures (e.g. Monte Carlo (MC) dropout sample variance) across inference tasks in order to improve the detection and segmentation of focal pathologies (e.g. lesions, tumours) in brain MR images. We apply the framework to two different contexts. First, we demonstrate that propagating multiple sclerosis T2 lesion segmentation results along with their associated uncertainty measures improves subsequent T2 lesion detection accuracy when evaluated on a proprietary large-scale, multi-site, clinical trial dataset. Second, we show how by propagating uncertainties associated with a regressed 3D MRI volume as an additional input to a follow-on brain tumour segmentation task, one can improve segmentation results on the publicly available BraTS-2018 dataset.

R. Mehta and T. Christinck—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans. Med. Imaging 37(3), 803–814 (2017)

    Article  Google Scholar 

  2. Mehta, R., Arbel, T.: RS-Net: regression-segmentation 3D CNN for synthesis of full resolution missing brain MRI in the presence of tumours. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, pp. 119–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_13

    Chapter  Google Scholar 

  3. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  4. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  5. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 655–663. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_74

    Chapter  Google Scholar 

  6. Tousignant, A., Lemaître, P., Precup, D., Arnold, D.L., Arbel, T.: Prediction of disease progression in multiple sclerosis patients using deep learning analysis of MRI data. In: International Conference on Medical Imaging with Deep Learning, pp. 483–492, May 2019

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059, June 2016

    Google Scholar 

  8. Ozdemir, O., Woodward, B., Berlin, A.A.: Propagating uncertainty in multi-stage Bayesian convolutional neural networks with application to pulmonary nodule detection. arXiv preprint arXiv:1712.00497 (2017)

  9. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C., Alzheimer’s Disease Neuroimaging Initiative: Bayesian QuickNAT: model uncertainty in deep whole-brain segmentation for structure-wise quality control. NeuroImage 195, 11–22 (2019)

    Article  Google Scholar 

  10. Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 17816 (2017)

    Article  Google Scholar 

  11. van Tulder, G., de Bruijne, M.: Why does synthesized data improve multi-sequence classification? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 531–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_65

    Chapter  Google Scholar 

  12. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  13. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  14. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  15. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

Download references

Acknowledgements

This work was supported by a Canadian Natural Science and Engineering Research Council (NSERC) Collaborative Research and Development Grant (CRDPJ 505357 - 16), Synaptive Medical, the Canadian NSERC Discovery and CREATE grants, and an award from the International Progressive MS Alliance (PA-1603-08175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghav Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehta, R., Christinck, T., Nair, T., Lemaitre, P., Arnold, D., Arbel, T. (2019). Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference. In: Greenspan, H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures. CLIP UNSURE 2019 2019. Lecture Notes in Computer Science(), vol 11840. Springer, Cham. https://doi.org/10.1007/978-3-030-32689-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32689-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32688-3

  • Online ISBN: 978-3-030-32689-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics