Skip to main content

Genetic, Environmental, and Nuclear Factors Governing Genomic Rearrangements

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1210))

Abstract

Studies employing whole genome and exome sequencing have revealed two remarkable features of prostate cancer (PCa)—the overall low mutation rates, and high rates of genomic rearrangements resulting in recurrent gene fusions. Genomic rearrangements involving the ETS transcription factor family genes are early driver events in PCa. These rearrangements typically involve the fusion of androgen-regulated transcriptionally active genes with the ETS genes (ERG, ETV1, ETV4 and ETV5), resulting in over-expression of fusion genes. The most prevalent ETS gene rearrangement, which is observed in >50% of PCa, involves the fusion of the androgen receptor (AR) target gene, TMPRSS2, with the ERG proto-oncogene, resulting in the formation of the TMPRSS2-ERG gene fusion. In this chapter, we consider the multitude of factors that influence the formation of recurrent genomic rearrangements in PCa. Understanding the mechanistic basis of gene fusion formation will shed light on unique features of PCa etiology and should impact several aspects of clinical disease management, ranging from prevention and early diagnosis to therapeutic targeting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.A. Tomlins et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748), 644–648 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. S.A. Tomlins et al., Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448(7153), 595–599 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. S.A. Tomlins et al., TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66(7), 3396–3400 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. B.E. Helgeson et al., Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 68(1), 73–80 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. N. Palanisamy et al., Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 16(7), 793–798 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R.S. Mani, A.M. Chinnaiyan, Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat. Rev. Genet. 11(12), 819–829 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. R.S. Mani et al., Induced chromosomal proximity and gene fusions in prostate cancer. Science 326(5957), 1230 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Lin et al., Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6), 1069–1083 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M.M. Vilenchik, A.G. Knudson, Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl. Acad. Sci. U. S. A. 100(22), 12871–12876 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A.M. De Marzo et al., Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7(4), 256–269 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. K.S. Sfanos et al., The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15(1), 11–24 (2018)

    Article  PubMed  Google Scholar 

  12. R.S. Mani et al., Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17(10), 2620–2631 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. Bhatia-Gaur et al., Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13(8), 966–977 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. Dutta et al., Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science 352(6293), 1576–1580 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.M. Shen, C. Abate-Shen, Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24(18), 1967–2000 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M.J. Kim et al., Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 62(11), 2999–3004 (2002)

    CAS  PubMed  Google Scholar 

  17. M.J. Kim et al., Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 99(5), 2884–2889 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S.A. Abdulkadir et al., Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol. Cell. Biol. 22(5), 1495–1503 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C.R. Bethel et al., Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with gleason score and chromosome 8p deletion. Cancer Res. 66(22), 10683–10690 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. C. Bowen et al., Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 60(21), 6111–6115 (2000)

    CAS  PubMed  Google Scholar 

  21. X. Ouyang et al., Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 65(15), 6773–6779 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. H. Blaser et al., TNF and ROS crosstalk in inflammation. Trends Cell Biol. 26(4), 249–261 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. N.S. Chandel, P.T. Schumacker, R.H. Arch, Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J. Biol. Chem. 276(46), 42728–42736 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Y.S. Kim et al., TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26(5), 675–687 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. J.J. Kim et al., TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ. 17(9), 1420–1434 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. B. Yazdanpanah et al., Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460(7259), 1159–1163 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. M.C. Markowski, C. Bowen, E.P. Gelmann, Inflammatory cytokines induce phosphorylation and ubiquitination of prostate suppressor protein NKX3.1. Cancer Res. 68(17), 6896–6901 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C. Bowen, T. Zheng, E.P. Gelmann, NKX3.1 suppresses TMPRSS2-ERG gene rearrangement and mediates repair of androgen receptor-induced DNA damage. Cancer Res. 75(13), 2686–2698 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. D.A. Frohlich et al., The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27(31), 4353–4362 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. M. Nadal et al., Structure of the homodimeric androgen receptor ligand-binding domain. Nat. Commun. 8, 14388 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.E. van Royen et al., Stepwise androgen receptor dimerization. J. Cell Sci. 125(Pt 8), 1970–1979 (2012)

    Article  PubMed  CAS  Google Scholar 

  32. C. Dai, H. Heemers, N. Sharifi, Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 7(9) (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Z. Zhang et al., An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. Genome Res. 29(2), 223–235 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M.E. Ashour, R. Atteya, S.F. El-Khamisy, Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat. Rev. Cancer 15(3), 137–151 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Pommier et al., Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17(11), 703–721 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. M.C. Haffner et al., Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. (2010)

    Google Scholar 

  37. A. Canela et al., Genome organization drives chromosome fragility. Cell 170(3), 507–521.e18 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L. Uuskula-Reimand et al., Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 17(1), 182 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  39. K. Skourti-Stathaki, N.J. Proudfoot, A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 28(13), 1384–1396 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Aguilera, B. Gomez-Gonzalez, DNA-RNA hybrids: the risks of DNA breakage during transcription. Nat. Struct. Mol. Biol. 24(5), 439–443 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. A. El Hage et al., Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24(14), 1546–1558 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. S. Tuduri et al., Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11(11), 1315–1324 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Yang et al., Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol. Cell 53(3), 484–497 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. P.A. Riley, Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65(1), 27–33 (1994)

    Article  CAS  PubMed  Google Scholar 

  45. E.I. Azzam, J.P. Jay-Gerin, D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327(1–2), 48–60 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. R. Ameziane-El-Hassani et al., NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc. Natl. Acad. Sci. U. S. A. 112(16), 5051–5056 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. T.K. Li et al., Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 13(12), 1553–1560 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. N.R. Pannunzio, M.R. Lieber, AID and reactive oxygen species can induce DNA breaks within human chromosomal translocation fragile zones. Mol. Cell 68(5), 901–912.e3 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. N.R. Pannunzio, M.R. Lieber, Concept of DNA lesion longevity and chromosomal translocations. Trends Biochem. Sci. 43(7), 490–498 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.R. Lieber, The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M.A. Rubin, C.A. Maher, A.M. Chinnaiyan, Common gene rearrangements in prostate cancer. J. Clin. Oncol. 29(27), 3659–3668 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. N.C. Bastus et al., Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res. 70(23), 9544–9548 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. N. Coll-Bastus et al., DNA replication-dependent induction of gene proximity by androgen. Hum. Mol. Genet. 24(4), 963–971 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. H. Lu et al., Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558(7709), 318–323 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. B.R. Sabari et al., Coactivator condensation at super-enhancers links phase separation and gene control. Science 361(6400) (2018)

    Google Scholar 

  56. S. Chong et al., Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361(6400) (2018)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. W.K. Cho et al., Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361(6400), 412–415 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. D. Hnisz et al., A phase separation model for transcriptional control. Cell 169(1), 13–23 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Boija et al., Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175(7), 1842–1855.e16 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. Q. Du et al., Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nat. Commun. 10(1), 416 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. X. Li et al., BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep. 22(3), 796–808 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. C. Weier et al., Nucleotide resolution analysis of TMPRSS2 and ERG rearrangements in prostate cancer. J. Pathol. 230(2), 174–183 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. C.C. Pritchard et al., Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375(5), 443–453 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. C.S. Grasso et al., The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406), 239–243 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M.F. Berger et al., The genomic complexity of primary human prostate cancer. Nature 470(7333), 214–220 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. D. Robinson et al., Integrative clinical genomics of advanced prostate cancer. Cell 161(5), 1215–1228 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cancer Genome Atlas Research Network, The molecular taxonomy of primary prostate cancer. Cell 163(4), 1011–1025 (2015)

    Article  CAS  Google Scholar 

  68. L. Burkhardt et al., CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 73(9), 2795–2805 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. I.A. Asangani et al., Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510(7504), 278–282 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. A. Stanlie et al., Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining. Mol. Cell 55(1), 97–110 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. C. Bowen, E.P. Gelmann, NKX3.1 activates cellular response to DNA damage. Cancer Res. 70(8), 3089–3097 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. C. Bowen et al., Functional activation of ATM by the prostate cancer suppressor NKX3.1. Cell Rep. 4(3), 516–529 (2013)

    Article  CAS  PubMed  Google Scholar 

  73. S.C. Baca et al., Punctuated evolution of prostate cancer genomes. Cell 153(3), 666–677 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. M.M. Shen, Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell 23(5), 567–569 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. P.J. Stephens et al., Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1), 27–40 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Mani laboratory for insights and comments; Peter Ly for discussions and manuscript edits. R.S.M. acknowledges funding support from the NIH Pathway to Independence (PI) Award (R00CA160640), the CPRIT Individual Investigator Research Award (RP190454), and the US Department of Defense Prostate Cancer Research Program (PCRP)—Impact Award (W81XWH-17-1-0675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram S. Mani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramanand, S.G., Mani, R.S. (2019). Genetic, Environmental, and Nuclear Factors Governing Genomic Rearrangements. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_3

Download citation

Publish with us

Policies and ethics