Skip to main content

Oncogenic ETS Factors in Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer

Abstract

Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Tomlins et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748), 644–648 (2005)

    CAS  PubMed  Google Scholar 

  2. S.A. Tomlins et al., Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448(7153), 595–599 (2007)

    CAS  PubMed  Google Scholar 

  3. B.S. Carver et al., Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41(5), 619–624 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J.C. King et al., Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet. 41(5), 524–526 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Zong et al., ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc. Natl. Acad. Sci. U. S. A. 106(30), 12465–12470 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Y. Chen et al., ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat. Med. 19(8), 1023–1029 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. P.C. Hollenhorst, L.P. McIntosh, B.J. Graves, Genomic and biochemical insights into the specificity of ETS transcription factors. Annu. Rev. Biochem. 80, 437–471 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G.H. Wei et al., Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J. 29(13), 2147–2160 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P.C. Hollenhorst, D.A. Jones, B.J. Graves, Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids Res. 32(18), 5693–5702 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Albino et al., ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res. 72(11), 2889–2900 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. X. Gu et al., Reduced PDEF expression increases invasion and expression of mesenchymal genes in prostate cancer cells. Cancer Res. 67(9), 4219–4226 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. N. Longoni et al., ETS transcription factor ESE1/ELF3 orchestrates a positive feedback loop that constitutively activates NF-kappaB and drives prostate cancer progression. Cancer Res. 73(14), 4533–4547 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Cancer Genome Atlas Research Network, The molecular taxonomy of primary prostate cancer. Cell 163(4), 1011–1025 (2015)

    Article  CAS  Google Scholar 

  14. D. Robinson et al., Integrative clinical genomics of advanced prostate cancer. Cell 161(5), 1215–1228 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Aytes et al., ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 110(37), E3506–E3515 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. E. Baena et al., ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 27(6), 683–698 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Higgins et al., Interaction of the androgen receptor, ETV1, and PTEN pathways in mouse prostate varies with pathological stage and predicts cancer progression. Horm. Cancer 6(2–3), 67–86 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D.S. Rickman et al., SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 69(7), 2734–2738 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Paulo et al., FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer 51(3), 240–249 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. B.E. Helgeson et al., Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 68(1), 73–80 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. V. Kedage et al., An interaction with Ewing’s sarcoma breakpoint protein EWS defines a specific oncogenic mechanism of ETS factors rearranged in prostate cancer. Cell Rep. 17(5), 1289–1301 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P.C. Hollenhorst et al., Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. Genes Dev. 25(20), 2147–2157 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Kumar-Sinha, S.A. Tomlins, A.M. Chinnaiyan, Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8(7), 497–511 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D. Hessels, J.A. Schalken, Recurrent gene fusions in prostate cancer: their clinical implications and uses. Curr. Urol. Rep. 14(3), 214–222 (2013)

    Article  PubMed  Google Scholar 

  25. S.A. Tomlins et al., TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 66(7), 3396–3400 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. R. Mehra et al., Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod. Pathol. 20(5), 538–544 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. S. Minner et al., Marked heterogeneity of ERG expression in large primary prostate cancers. Mod. Pathol. 26(1), 106–116 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. J.D. Barros-Silva et al., Novel 5′ fusion partners of ETV1 and ETV4 in prostate cancer. Neoplasia 15(7), 720–726 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. K.G. Hermans et al., Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res. 68(9), 3094–3098 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. B. Han et al., A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res. 68(18), 7629–7637 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Clark et al., Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 26(18), 2667–2673 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. M.A. Svensson et al., Testing mutual exclusivity of ETS rearranged prostate cancer. Lab. Investig. 91(3), 404–412 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. J. Wang et al., Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 66(17), 8347–8351 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. M.C. Wong et al., Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur. Urol. 70(5), 862–874 (2016)

    Article  PubMed  Google Scholar 

  35. C.K. Zhou et al., TMPRSS2:ERG gene fusions in prostate cancer of West African men and a meta-analysis of racial differences. Am. J. Epidemiol. 186(12), 1352–1361 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  36. B. Ateeq et al., Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from northern India. Prostate 75(10), 1051–1062 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Weischenfeldt et al., Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 23(2), 159–170 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. M.C. Tsourlakis et al., Heterogeneity of ERG expression in prostate cancer: a large section mapping study of entire prostatectomy specimens from 125 patients. BMC Cancer 16, 641 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. B.S. Taylor et al., Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1), 11–22 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K.A. Leinonen et al., Loss of PTEN is associated with aggressive behavior in ERG-positive prostate cancer. Cancer Epidemiol. Biomark. Prev. 22(12), 2333–2344 (2013)

    Article  CAS  Google Scholar 

  41. S.A. Tomlins et al., The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 13(6), 519–528 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. C.E. Barbieri et al., Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44(6), 685–689 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L. Burkhardt et al., CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 73(9), 2795–2805 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. J. Shoag et al., SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG. J. Clin. Invest. 128(1), 381–386 (2018)

    Article  PubMed  Google Scholar 

  45. J. Clark et al., Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27(14), 1993–2003 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. M.M. Shen, C. Abate-Shen, Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 24(18), 1967–2000 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. F. Demichelis et al., TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26(31), 4596–4599 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. K.D. Berg et al., ERG protein expression in diagnostic specimens is associated with increased risk of progression during active surveillance for prostate cancer. Eur. Urol. 66(5), 851–860 (2014)

    Article  CAS  PubMed  Google Scholar 

  49. C. Hagglof et al., TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 9(2), e86824 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. U. Lokman et al., PTEN loss but not ERG expression in diagnostic biopsies is associated with increased risk of progression and adverse surgical findings in men with prostate cancer on active surveillance. Eur. Urol. Focus 4(6), 867–873 (2018)

    Article  PubMed  Google Scholar 

  51. M. Taris et al., ERG expression in prostate cancer: the prognostic paradox. Prostate 74(15), 1481–1487 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. S. Terry et al., Clinical value of ERG, TFF3, and SPINK1 for molecular subtyping of prostate cancer. Cancer 121(9), 1422–1430 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. D.W. Lin et al., Urinary TMPRSS2:ERG and PCA3 in an active surveillance cohort: results from a baseline analysis in the Canary Prostate Active Surveillance Study. Clin. Cancer Res. 19(9), 2442–2450 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A. Font-Tello et al., Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate 75(11), 1216–1226 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. S.A. Tomlins et al., Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur. Urol. 70(1), 45–53 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. H. Amir, C.M.R. Lebastchi, A.M. Helfand, T. Osawa, J. Siddiqui, R. Siddiqui, A.M. Chinnaiyan, P. Kunju, R. Mehra, D. Snyder, S.A. Tomlins, J.T. Wei, T.M. Morgan, Michigan Prostate Score (MIPS): an analysis of a novel urinary biomarker panel for the prediction of prostate cancer and its impact on biopsy rates. J. Urol. 197(4), e128 (2007)

    Google Scholar 

  57. R.M. Hagen et al., Quantitative analysis of ERG expression and its splice isoforms in formalin-fixed, paraffin-embedded prostate cancer samples: association with seminal vesicle invasion and biochemical recurrence. Am. J. Clin. Pathol. 142(4), 533–540 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. C. Lin et al., Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6), 1069–1083 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M.C. Haffner et al., Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42(8), 668–675 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. R.S. Mani et al., Induced chromosomal proximity and gene fusions in prostate cancer. Science 326(5957), 1230 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. R.S. Mani et al., Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17(10), 2620–2631 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. X. Li et al., BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep. 22(3), 796–808 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. V. Vlaeminck-Guillem et al., The Ets family member Erg gene is expressed in mesodermal tissues and neural crests at fundamental steps during mouse embryogenesis. Mech. Dev. 91(1–2), 331–335 (2000)

    Article  CAS  PubMed  Google Scholar 

  64. F. Ellett, B.T. Kile, G.J. Lieschke, The role of the ETS factor erg in zebrafish vasculogenesis. Mech. Dev. 126(3–4), 220–229 (2009)

    Article  CAS  PubMed  Google Scholar 

  65. F. McLaughlin et al., Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood 98(12), 3332–3339 (2001)

    Article  CAS  PubMed  Google Scholar 

  66. G.M. Birdsey et al., The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/beta-catenin signaling. Dev. Cell 32(1), 82–96 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. G.M. Birdsey et al., Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 111(7), 3498–3506 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. A. Chotteau-Lelievre et al., PEA3 transcription factors are expressed in tissues undergoing branching morphogenesis and promote formation of duct-like structures by mammary epithelial cells in vitro. Dev. Biol. 259(2), 241–257 (2003)

    Article  CAS  PubMed  Google Scholar 

  69. A. Garg et al., FGF-induced Pea3 transcription factors program the genetic landscape for cell fate determination. PLoS Genet. 14(9), e1007660 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. W.A. Znosko et al., Overlapping functions of Pea3 ETS transcription factors in FGF signaling during zebrafish development. Dev. Biol. 342(1), 11–25 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. J.C. Herriges et al., FGF-regulated ETV transcription factors control FGF-SHH feedback loop in lung branching. Dev. Cell 35(3), 322–332 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Z. Zhang et al., FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds. Dev. Cell 16(4), 607–613 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. A. Chotteau-Lelievre et al., Differential expression patterns of the PEA3 group transcription factors through murine embryonic development. Oncogene 15(8), 937–952 (1997)

    Article  CAS  PubMed  Google Scholar 

  74. A. Chotteau-Lelievre et al., Expression patterns of the Ets transcription factors from the PEA3 group during early stages of mouse development. Mech. Dev. 108(1–2), 191–195 (2001)

    Article  CAS  PubMed  Google Scholar 

  75. S.J. Loughran et al., The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9(7), 810–819 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. G. Tyagi et al., Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causes an abnormal first wave of spermatogenesis. Biol. Reprod. 81(2), 258–266 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. C.L. Carmichael et al., Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 109(38), 15437–15442 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. S. Tsuzuki, O. Taguchi, M. Seto, Promotion and maintenance of leukemia by ERG. Blood 117(14), 3858–3868 (2011)

    Article  CAS  PubMed  Google Scholar 

  79. J.A. Thoms et al., ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 117(26), 7079–7089 (2011)

    Article  CAS  PubMed  Google Scholar 

  80. O.M. Casey et al., TMPRSS2-driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One 7(7), e41668 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. A. Srivastava, D.K. Price, W.D. Figg, Prostate tumor development and androgen receptor function alterations in a new mouse model with ERG overexpression and PTEN inactivation. Cancer Biol. Ther. 15(10), 1293–1295 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. L.T. Nguyen et al., ERG activates the YAP1 transcriptional program and induces the development of age-related prostate tumors. Cancer Cell 27(6), 797–808 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. R.S. Mani et al., TMPRSS2-ERG-mediated feed-forward regulation of wild-type ERG in human prostate cancers. Cancer Res. 71(16), 5387–5392 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. C. Cai et al., Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer. Cancer Res. 69(15), 6027–6032 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. K.D. Mertz et al., Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia 9(3), 200–206 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. N. Selvaraj et al., Prostate cancer ETS rearrangements switch a cell migration gene expression program from RAS/ERK to PI3K/AKT regulation. Mol. Cancer 13, 61 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. S.A. Tomlins et al., Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10(2), 177–188 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. L. Shao et al., Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors. Clin. Cancer Res. 18(24), 6648–6657 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Y. Yang et al., Loss of FOXO1 cooperates with TMPRSS2-ERG overexpression to promote prostate tumorigenesis and cell invasion. Cancer Res. 77(23), 6524–6537 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S. Gupta et al., FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 70(17), 6735–6745 (2010)

    Article  CAS  PubMed  Google Scholar 

  91. P.C. Hollenhorst et al., The ETS gene ETV4 is required for anchorage-independent growth and a cell proliferation gene expression program in PC3 prostate cells. Genes Cancer 1(10), 1044–1052 (2011)

    Article  PubMed  CAS  Google Scholar 

  92. D. Mesquita et al., Specific and redundant activities of ETV1 and ETV4 in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget 6(7), 5217–5236 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  93. S. Wang et al., Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 111(11), 4251–4256 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Z. Mounir et al., TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation. Oncogene 34(29), 3815–3825 (2015)

    Article  CAS  PubMed  Google Scholar 

  95. J. Yu et al., An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17(5), 443–454 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. C. Sun et al., TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27(40), 5348–5353 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. S. You et al., Integrated classification of prostate cancer reveals a novel luminal subtype with poor outcome. Cancer Res. 76(17), 4948–4958 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A.M. Blee et al., TMPRSS2-ERG controls luminal epithelial lineage and antiandrogen sensitivity in PTEN and TP53-mutated prostate cancer. Clin. Cancer Res. 24(18), 4551–4565 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. K. Shimizu et al., An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc. Natl. Acad. Sci. U. S. A. 90(21), 10280–10284 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. M. Giovannini et al., EWS-erg and EWS-Fli1 fusion transcripts in Ewing’s sarcoma and primitive neuroectodermal tumors with variant translocations. J. Clin. Invest. 94(2), 489–496 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. T. Dunn et al., ERG gene is translocated in an Ewing’s sarcoma cell line. Cancer Genet. Cytogenet. 76(1), 19–22 (1994)

    Article  CAS  PubMed  Google Scholar 

  102. T.G.P. Grunewald et al., Ewing sarcoma. Nat. Rev. Dis. Primers 4(1), 5 (2018)

    Article  PubMed  Google Scholar 

  103. I.S. Jeon et al., A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10(6), 1229–1234 (1995)

    CAS  PubMed  Google Scholar 

  104. M. Peter et al., A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 14(10), 1159–1164 (1997)

    Article  CAS  PubMed  Google Scholar 

  105. F. Urano et al., Molecular analysis of Ewing’s sarcoma: another fusion gene, EWS-E1AF, available for diagnosis. Jpn. J. Cancer Res. 89(7), 703–711 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. P.H. Sorensen et al., A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat. Genet. 6(2), 146–151 (1994)

    Article  CAS  PubMed  Google Scholar 

  107. D.D. Prasad et al., TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene 9(12), 3717–3729 (1994)

    CAS  PubMed  Google Scholar 

  108. I. Panagopoulos et al., Fusion of the FUS gene with ERG in acute myeloid leukemia with t(16;21)(p11;q22). Genes Chromosomes Cancer 11(4), 256–262 (1994)

    Article  CAS  PubMed  Google Scholar 

  109. P. Peeters et al., Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90(7), 2535–2540 (1997)

    Article  CAS  PubMed  Google Scholar 

  110. R. Bose et al., ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 546(7660), 671–675 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. J.A. Budka et al., Common ELF1 deletion in prostate cancer bolsters oncogenic ETS function, inhibits senescence and promotes docetaxel resistance. Genes Cancer 9(5–6), 198–214 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  112. D.E. Linn et al., Deletion of interstitial genes between TMPRSS2 and ERG promotes prostate cancer progression. Cancer Res. 76(7), 1869–1881 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. F.W. Huang et al., Exome sequencing of African-American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov. 7(9), 973–983 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. T.E. Sussan et al., Trisomy represses Apc(Min)-mediated tumours in mouse models of Down’s syndrome. Nature 451(7174), 73–75 (2008)

    Article  CAS  PubMed  Google Scholar 

  115. S.Y. Ku et al., Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355(6320), 78–83 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. P. Mu et al., SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355(6320), 84–88 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. B.J. Graves, J.M. Petersen, Specificity within the ets family of transcription factors. Adv. Cancer Res. 75, 1–55 (1998)

    Article  CAS  PubMed  Google Scholar 

  118. S. De et al., Steric mechanism of auto-inhibitory regulation of specific and non-specific DNA binding by the ETS transcriptional repressor ETV6. J. Mol. Biol. 426(7), 1390–1406 (2014)

    Article  CAS  PubMed  Google Scholar 

  119. X. Xu et al., Structural basis for reactivating the mutant TERT promoter by cooperative binding of p52 and ETS1. Nat. Commun. 9(1), 3183 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. R. Sharma, S.P. Gangwar, A.K. Saxena, Comparative structure analysis of the ETSi domain of ERG3 and its complex with the E74 promoter DNA sequence. Acta Crystallogr. F Struct. Biol. Commun. 74(Pt 10), 656–663 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. S.L. Currie et al., Structured and disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1, ETV4 and ETV5. Nucleic Acids Res. 45(5), 2223–2241 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. M. Shiina et al., A novel allosteric mechanism on protein-DNA interactions underlying the phosphorylation-dependent regulation of Ets1 target gene expressions. J. Mol. Biol. 427(8), 1655–1669 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. C.D. Cooper et al., Structures of the Ets protein DNA-binding domains of transcription factors Etv1, Etv4, Etv5, and Fev: determinants of DNA binding and redox regulation by disulfide bond formation. J. Biol. Chem. 290(22), 13692–13709 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. T. Shrivastava et al., Structural basis of Ets1 activation by Runx1. Leukemia 28(10), 2040–2048 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. M.C. Regan et al., Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited. Proc. Natl. Acad. Sci. U. S. A. 110(33), 13374–13379 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. N.D. Babayeva, O.I. Baranovskaya, T.H. Tahirov, Structural basis of Ets1 cooperative binding to widely separated sites on promoter DNA. PLoS One 7(3), e33698 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. N.D. Babayeva et al., Structural basis of Ets1 cooperative binding to palindromic sequences on stromelysin-1 promoter DNA. Cell Cycle 9(15), 3054–3062 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. M. Hassler, T.J. Richmond, The B-box dominates SAP-1-SRF interactions in the structure of the ternary complex. EMBO J. 20(12), 3018–3028 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Y. Mo et al., Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol. Cell 2(2), 201–212 (1998)

    Article  CAS  PubMed  Google Scholar 

  130. Y. Mo et al., Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. Nat. Struct. Biol. 7(4), 292–297 (2000)

    Article  CAS  PubMed  Google Scholar 

  131. M.D. Jonsen et al., Characterization of the cooperative function of inhibitory sequences in Ets-1. Mol. Cell. Biol. 16(5), 2065–2073 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. D.O. Cowley, B.J. Graves, Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev. 14(3), 366–376 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  133. A. Goel, R. Janknecht, Acetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu. Mol. Cell. Biol. 23(17), 6243–6254 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. A. Greenall et al., DNA binding by the ETS-domain transcription factor PEA3 is regulated by intramolecular and intermolecular protein.protein interactions. J. Biol. Chem. 276(19), 16207–16215 (2001)

    Article  CAS  PubMed  Google Scholar 

  135. P. Chi et al., ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467(7317), 849–853 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. J.E. Fish et al., Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 144(13), 2428–2444 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. P.C. Hollenhorst et al., Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 21(15), 1882–1894 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. J. Boros et al., Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res. 19(11), 1963–1973 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. N. Selvaraj et al., Extracellular signal-regulated kinase signaling regulates the opposing roles of JUN family transcription factors at ETS/AP-1 sites and in cell migration. Mol. Cell. Biol. 35(1), 88–100 (2015)

    Article  PubMed  CAS  Google Scholar 

  140. B.J. Madison et al., Electrostatic repulsion causes anticooperative DNA binding between tumor suppressor ETS transcription factors and JUN-FOS at composite DNA sites. J. Biol. Chem. 293(48), 18624–18635 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. A. Verger et al., Identification of amino acid residues in the ETS transcription factor Erg that mediate Erg-Jun/Fos-DNA ternary complex formation. J. Biol. Chem. 276(20), 17181–17189 (2001)

    Article  CAS  PubMed  Google Scholar 

  142. J.P. Plotnik et al., ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells. Nucleic Acids Res. 42(19), 11928–11940 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. K. Gangwal et al., Emergent properties of EWS/FLI regulation via GGAA microsatellites in Ewing’s sarcoma. Genes Cancer 1(2), 177–187 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. K. Gangwal et al., Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc. Natl. Acad. Sci. U. S. A. 105(29), 10149–10154 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. A.L. Kennedy et al., Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget 6(30), 30178–30193 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  146. T.L. Sreenath et al., ETS related gene mediated androgen receptor aggregation and endoplasmic reticulum stress in prostate cancer development. Sci. Rep. 7(1), 1109 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. N.L. Sharma et al., The ETS family member GABPalpha modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer. Nucleic Acids Res. 42(10), 6256–6269 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. K.R. Chng et al., A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J. 31(12), 2810–2823 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. J. Wang et al., Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res. 68(20), 8516–8524 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. C. Cai et al., ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Mol. Endocrinol. 21(8), 1835–1846 (2007)

    Article  CAS  PubMed  Google Scholar 

  151. H. Kim et al., Estradiol-ERbeta2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion. Oncotarget 8(38), 62820–62833 (2017)

    PubMed  Google Scholar 

  152. J.S. Roe et al., BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58(6), 1028–1039 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. S. Oh, S. Shin, R. Janknecht, ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim. Biophys. Acta 1826(1), 1–12 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  154. A.M. Blee et al., BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget 7(25), 38319–38332 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  155. Y. Yamamoto-Shiraishi et al., Etv1 and Ewsr1 cooperatively regulate limb mesenchymal Fgf10 expression in response to apical ectodermal ridge-derived fibroblast growth factor signal. Dev. Biol. 394(1), 181–190 (2014)

    Article  CAS  PubMed  Google Scholar 

  156. A. Gorthi et al., EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555(7696), 387–391 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. A. Verger et al., The Mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members. Nucleic Acids Res. 41(9), 4847–4859 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. S.L. Currie et al., ETV4 and AP1 transcription factors form multivalent interactions with three sites on the MED25 activator-interacting domain. J. Mol. Biol. 429(20), 2975–2995 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. D.S. Rickman et al., Oncogene-mediated alterations in chromatin conformation. Proc. Natl. Acad. Sci. U. S. A. 109(23), 9083–9088 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. T.D. Kim, S. Shin, R. Janknecht, ETS transcription factor ERG cooperates with histone demethylase KDM4A. Oncol. Rep. 35(6), 3679–3688 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Z. Mounir et al., ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. Elife 5, e13964 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  162. N. Melling et al., Overexpression of enhancer of zeste homolog 2 (EZH2) characterizes an aggressive subset of prostate cancers and predicts patient prognosis independently from pre- and postoperatively assessed clinicopathological parameters. Carcinogenesis 36(11), 1333–1340 (2015)

    Article  CAS  PubMed  Google Scholar 

  163. P. Kunderfranco et al., ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One 5(5), e10547 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. V. Kedage et al., Phosphorylation of the oncogenic transcription factor ERG in prostate cells dissociates polycomb repressive complex 2, allowing target gene activation. J. Biol. Chem. 292(42), 17225–17235 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. N. Selvaraj, V. Kedage, P.C. Hollenhorst, Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun. Signal 13(1), 12 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. R. Janknecht, Analysis of the ERK-stimulated ETS transcription factor ER81. Mol. Cell. Biol. 16(4), 1550–1556 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. R. Janknecht et al., The ETS-related transcription factor ERM is a nuclear target of signaling cascades involving MAPK and PKA. Oncogene 13(8), 1745–1754 (1996)

    CAS  PubMed  Google Scholar 

  168. R.C. O’Hagan et al., The activity of the Ets transcription factor PEA3 is regulated by two distinct MAPK cascades. Oncogene 13(6), 1323–1333 (1996)

    PubMed  Google Scholar 

  169. Y. Huang et al., MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation. Leukemia 30(7), 1552–1561 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. R. Keld et al., The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma. Mol. Cancer 9, 313 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. J. Wu, R. Janknecht, Regulation of the ETS transcription factor ER81 by the 90-kDa ribosomal S6 kinase 1 and protein kinase A. J. Biol. Chem. 277(45), 42669–42679 (2002)

    Article  CAS  PubMed  Google Scholar 

  172. B. Guo et al., Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Res. 39(15), 6403–6413 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. C. Degerny et al., SUMO modification of the Ets-related transcription factor ERM inhibits its transcriptional activity. J. Biol. Chem. 280(26), 24330–24338 (2005)

    Article  CAS  PubMed  Google Scholar 

  174. W. Gan et al., SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol. Cell 59(6), 917–930 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. J. An et al., Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59(6), 904–916 (2015)

    Article  CAS  PubMed  Google Scholar 

  176. A.C. Vitari et al., COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature 474(7351), 403–406 (2011)

    Article  CAS  PubMed  Google Scholar 

  177. J.L. Baert et al., The E3 ubiquitin ligase complex component COP1 regulates PEA3 group member stability and transcriptional activity. Oncogene 29(12), 1810–1820 (2010)

    Article  CAS  PubMed  Google Scholar 

  178. P. Adamo et al., The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells. Oncol. Lett. 14(5), 5605–5610 (2017)

    PubMed  PubMed Central  Google Scholar 

  179. L. Wu et al., ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 73(19), 6068–6079 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. X. Wang et al., Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. Cancer Cell 31(6), 844–847 (2017)

    Article  CAS  PubMed  Google Scholar 

  181. A.A. Mohamed et al., Identification of a small molecule that selectively inhibits ERG-positive cancer cell growth. Cancer Res. 78(13), 3659–3671 (2018)

    CAS  PubMed  Google Scholar 

  182. R. Nhili et al., Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines. Nucleic Acids Res. 41(1), 125–138 (2013)

    Article  CAS  PubMed  Google Scholar 

  183. M.S. Butler et al., Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer. Oncotarget 8(26), 42438–42454 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  184. H.V. Erkizan et al., A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat. Med. 15(7), 750–756 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. S. Rahim et al., YK-4-279 inhibits ERG and ETV1 mediated prostate cancer cell invasion. PLoS One 6(4), e19343 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. B. Winters et al., Inhibition of ERG activity in patient-derived prostate cancer xenografts by YK-4-279. Anticancer Res. 37(7), 3385–3396 (2017)

    CAS  PubMed  Google Scholar 

  187. S. Rahim et al., A small molecule inhibitor of ETV1, YK-4-279, prevents prostate cancer growth and metastasis in a mouse xenograft model. PLoS One 9(12), e114260 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. M.S. Pop et al., A small molecule that binds and inhibits the ETV1 transcription factor oncoprotein. Mol. Cancer Ther. 13(6), 1492–1502 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. J.C. Brenner et al., Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19(5), 664–678 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. P. Chatterjee et al., PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS One 8(4), e60408 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. S. Han et al., Targeted radiosensitization of ETS fusion-positive prostate cancer through PARP1 inhibition. Neoplasia 15(10), 1207–1217 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. H.T. Kissick et al., Development of a peptide-based vaccine targeting TMPRSS2:ERG fusion-positive prostate cancer. Cancer Immunol. Immunother. 62(12), 1831–1840 (2013)

    Article  CAS  PubMed  Google Scholar 

  193. C. Magi-Galluzzi et al., TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71(5), 489–497 (2011)

    Article  CAS  PubMed  Google Scholar 

  194. G. Galletti et al., ERG induces taxane resistance in castration-resistant prostate cancer. Nat. Commun. 5, 5548 (2014)

    Article  CAS  PubMed  Google Scholar 

  195. O. Reig et al., TMPRSS2-ERG in blood and docetaxel resistance in metastatic castration-resistant prostate cancer. Eur. Urol. 70(5), 709–713 (2016)

    Article  CAS  PubMed  Google Scholar 

  196. L.H. Mochmann et al., ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells. Oncotarget 5(2), 351–362 (2014)

    Article  PubMed  Google Scholar 

  197. C.S. Grasso et al., The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406), 239–243 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. M.F. Berger et al., The genomic complexity of primary human prostate cancer. Nature 470(7333), 214–220 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. S. Wang et al., The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer. Oncotarget 7(40), 64921–64931 (2016)

    PubMed  PubMed Central  Google Scholar 

  200. M. Goldman, B. Craft, A. Kamath, A. Brooks, J. Zhu, D. Haussler, The UCSC Xena Platform for cancer genomics data visualization and interpretation. bioRxiv (2018). https://doi.org/10.1101/326470

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Hollenhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicholas, T.R., Strittmatter, B.G., Hollenhorst, P.C. (2019). Oncogenic ETS Factors in Prostate Cancer. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_18

Download citation

Publish with us

Policies and ethics