Skip to main content

Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance

  • Chapter
  • First Online:
Prostate Cancer

Abstract

Metastatic or locally advanced prostate cancer (PCa) is typically treated with androgen deprivation therapy (ADT). Initially, PCa responds to the treatment and regresses. However, PCa almost always develops resistance to androgen deprivation and progresses to castrate-resistant prostate cancer (CRPCa), a currently incurable form of PCa. Wnt/β-Catenin signaling is frequently activated in late stage PCa and contributes to the development of therapy resistance. Although activating mutations in the Wnt/β-Catenin pathway are not common in primary PCa, this signaling cascade can be activated through other mechanisms in late stage PCa, including cross talk with other signaling pathways, growth factors and cytokines produced by the damaged tumor microenvironment, release of the co-activator β-Catenin from sequestration after inhibition of androgen receptor (AR) signaling, altered expression of Wnt ligands and factors that modulate the Wnt signaling, and therapy-induced cellular senescence. Research from genetically engineered mouse models indicates that activation of Wnt/β-Catenin signaling in the prostate is oncogenic, enables castrate-resistant PCa growth, induces an epithelial-to-mesenchymal transition (EMT), promotes neuroendocrine (NE) differentiation, and confers stem cell-like features to PCa cells. These important roles of Wnt/β-Catenin signaling in PCa progression underscore the need for the development of drugs targeting this pathway to treat therapy-resistant PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Huggins, Effect of orchiectomy and irradiation on cancer of the prostate. Ann. Surg. 115, 1192–1200 (1942)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.S. Cookson et al., Castration-resistant prostate cancer: AUA Guideline. J. Urol. 190, 429–438 (2013)

    Article  PubMed  Google Scholar 

  3. J.D. Debes, D.J. Tindall, Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med. 351, 1488–1490 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. S.M. Dehm, D.J. Tindall, Molecular regulation of androgen action in prostate cancer. J. Cell. Biochem. 99, 333–344 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. S.M. Dehm, D.J. Tindall, Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol. Endocrinol. 21, 2855–2863 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. T. Karantanos, P.G. Corn, T.C. Thompson, Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32, 5501–5511 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.L. Bishop et al., The master neural transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7, 54–71 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. B.J. Feldman, D. Feldman, The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. P.A. Watson, V.K. Arora, C.L. Sawyers, Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M.J. Linja et al., Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 61, 3550–3555 (2001)

    CAS  PubMed  Google Scholar 

  11. C.D. Chen et al., Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. J.L. Mohler et al., The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10, 440–448 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. J.A. Locke et al., Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. R.B. Montgomery et al., Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Saloniemi, H. Jokela, L. Strauss, P. Pakarinen, M. Poutanen, The diversity of sex steroid action: novel functions of hydroxysteroid (17beta) dehydrogenases as revealed by genetically modified mouse models. J. Endocrinol. 212, 27–40 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. G.A. Potter, S.E. Barrie, M. Jarman, M.G. Rowlands, Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471 (1995)

    Article  CAS  PubMed  Google Scholar 

  17. X.Y. Zhao et al., Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6, 703–706 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. R. Hu et al., Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Z. Guo et al., A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S.C. Chan, Y. Li, S.M. Dehm, Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal. J. Biol. Chem. 287, 19736–19749 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S.M. Dehm, L.J. Schmidt, H.V. Heemers, R.L. Vessella, D.J. Tindall, Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S.M. Dehm, D.J. Tindall, Alternatively spliced androgen receptor variants. Endocr. Relat. Cancer 18, R183–R196 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Henzler et al., Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat. Commun. 7, 13668 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Li et al., Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 73, 483–489 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Ho, S.M. Dehm, Androgen receptor rearrangement and splicing variants in resistance to endocrine therapies in prostate cancer. Endocrinology 158, 1533–1542 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  26. S.M. Dehm, K.M. Regan, L.J. Schmidt, D.J. Tindall, Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res. 67, 10067–10077 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. M.E. Taplin et al., Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398 (1995)

    Article  CAS  PubMed  Google Scholar 

  28. C.S. Grasso et al., The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E.S. Antonarakis et al., AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Q. Wang et al., Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138, 245–256 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z.M. Connelly et al., Foxa2 activates the transcription of androgen receptor target genes in castrate resistant prostatic tumors. Am. J. Clin. Exp. Urol. 6, 172–181 (2018)

    PubMed  PubMed Central  Google Scholar 

  32. C. Tran et al., Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J.S. de Bono et al., Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  34. S. Wang et al., Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. X. Yu et al., Activation of beta-Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate 69, 249–262 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K.J. Bruxvoort et al., Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Res. 67, 2490–2496 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. A.H. Davies, H. Beltran, A. Zoubeidi, Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. V.K. Arora et al., Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Beltran et al., Aggressive variants of castration-resistant prostate cancer. Clin. Cancer Res. 20, 2846–2850 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. Hirano, Y. Okada, S. Minei, Y. Takimoto, N. Nemoto, Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur. Urol. 45, 586–92; discussion 592 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. R. Nadal, M. Schweizer, O.N. Kryvenko, J.I. Epstein, M.A. Eisenberger, Small cell carcinoma of the prostate. Nat. Rev. Urol. 11, 213–219 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R. Aggarwal et al., Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J. Clin. Oncol. 36, 2492–2503 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J.I. Epstein et al., Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 38, 756–767 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  44. X. Deng et al., Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res. 68, 9663–9670 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. P.A. Abrahamsson, Neuroendocrine differentiation in prostatic carcinoma. Prostate 39, 135–148 (1999)

    Article  CAS  PubMed  Google Scholar 

  46. G. Ahlgren et al., Regressive changes and neuroendocrine differentiation in prostate cancer after neoadjuvant hormonal treatment. Prostate 42, 274–279 (2000)

    Article  CAS  PubMed  Google Scholar 

  47. T. Jiborn, A. Bjartell, P.A. Abrahamsson, Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology 51, 585–589 (1998)

    Article  CAS  PubMed  Google Scholar 

  48. S. Terry, H. Beltran, The many faces of neuroendocrine differentiation in prostate cancer progression. Front. Oncol. 4, 60 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  49. H. Beltran et al., Challenges in recognizing treatment-related neuroendocrine prostate cancer. J. Clin. Oncol. 30, e386–e389 (2012)

    Article  PubMed  Google Scholar 

  50. J.M. Mosquera et al., Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 15, 1–10 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. J. Huang et al., Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate 66, 1399–1406 (2006)

    Article  CAS  PubMed  Google Scholar 

  52. V. Tzelepi et al., Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clin. Cancer Res. 18, 666–677 (2012)

    Article  CAS  PubMed  Google Scholar 

  53. J.L. Yao et al., Small cell carcinoma of the prostate: an immunohistochemical study. Am. J. Surg. Pathol. 30, 705–712 (2006)

    Article  PubMed  Google Scholar 

  54. X. Yu et al., SOX2 expression in the developing, adult, as well as, diseased prostate. Prostate Cancer Prostatic Dis. 17, 301–309 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. T.C. Yuan, S. Veeramani, M.F. Lin, Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr. Relat. Cancer 14, 531–547 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. M.E. Wright, M.J. Tsai, R. Aebersold, Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol. Endocrinol. 17, 1726–1737 (2003)

    Article  CAS  PubMed  Google Scholar 

  57. R. Shen et al., Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urol. Oncol. 3, 67–75 (1997)

    Article  CAS  PubMed  Google Scholar 

  58. W.J. Huss et al., Origin of androgen-insensitive poorly differentiated tumors in the transgenic adenocarcinoma of mouse prostate model. Neoplasia 9, 938–950 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J.R. Gingrich et al., Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 57, 4687–4691 (1997)

    CAS  PubMed  Google Scholar 

  60. M.A. Johnson et al., Castration triggers growth of previously static androgen-independent lesions in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Prostate 62, 322–338 (2005)

    Article  PubMed  Google Scholar 

  61. D. Lin et al., High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014)

    Article  CAS  PubMed  Google Scholar 

  62. M.A. Noordzij et al., Neuroendocrine differentiation in human prostatic tumor models. Am. J. Pathol. 149, 859–871 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. J. Jongsma et al., Kinetics of neuroendocrine differentiation in an androgen-dependent human prostate xenograft model. Am. J. Pathol. 154, 543–551 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. M.E. Cox, P.D. Deeble, E.A. Bissonette, S.J. Parsons, Activated 3′,5′-cyclic AMP-dependent protein kinase is sufficient to induce neuroendocrine-like differentiation of the LNCaP prostate tumor cell line. J. Biol. Chem. 275, 13812–13818 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. P.D. Deeble, D.J. Murphy, S.J. Parsons, M.E. Cox, Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol. Cell. Biol. 21, 8471–8482 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. X. Yang et al., A human- and male-specific protocadherin that acts through the wnt signaling pathway to induce neuroendocrine transdifferentiation of prostate cancer cells. Cancer Res. 65, 5263–5271 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. E. Dardenne et al., N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. J.K. Lee et al., N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536–547 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. S.Y. Ku et al., Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. P. Mu et al., SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355, 84–88 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. G. Danza et al., Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol. Cancer Res. 10, 230–238 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. J. Qi et al., Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. S.S. Yadav et al., Induction of neuroendocrine differentiation in prostate cancer cells by dovitinib (TKI-258) and its therapeutic implications. Transl. Oncol. 10, 357–366 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  74. H. Bonkhoff, N. Wernert, G. Dhom, K. Remberger, Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate 19, 91–98 (1991)

    Article  CAS  PubMed  Google Scholar 

  75. N. Dizeyi et al., Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol. Oncol. 29, 436–445 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. K. Uchida et al., Murine androgen-independent neuroendocrine carcinoma promotes metastasis of human prostate cancer cell line LNCaP. Prostate 66, 536–545 (2006)

    Article  CAS  PubMed  Google Scholar 

  77. K. Hashimoto et al., The potential of neurotensin secreted from neuroendocrine tumor cells to promote gelsolin-mediated invasiveness of prostate adenocarcinoma cells. Lab. Investig. 95, 283–295 (2015)

    Article  CAS  PubMed  Google Scholar 

  78. R. Grobholz et al., Influence of neuroendocrine tumor cells on proliferation in prostatic carcinoma. Hum. Pathol. 36, 562–570 (2005)

    Article  CAS  PubMed  Google Scholar 

  79. R.J. Jin et al., NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res. 64, 5489–5495 (2004)

    Article  CAS  PubMed  Google Scholar 

  80. J. Szczyrba et al., Neuroendocrine cells of the prostate derive from the neural crest. J. Biol. Chem. 292, 2021–2031 (2017)

    Article  CAS  PubMed  Google Scholar 

  81. M. Zou et al., Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7, 736–749 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. D.E. Hansel et al., Shared TP53 gene mutation in morphologically and phenotypically distinct concurrent primary small cell neuroendocrine carcinoma and adenocarcinoma of the prostate. Prostate 69, 603–609 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. C.G. Sauer, A. Roemer, R. Grobholz, Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate 66, 227–234 (2006)

    Article  CAS  PubMed  Google Scholar 

  84. N.C. Bastus et al., Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res. 70, 9544–9548 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. H. Beltran et al., Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. M.G. Oser, M.J. Niederst, L.V. Sequist, J.A. Engelman, Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 16, e165–e172 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. H. Beltran et al., Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Y. Li et al., SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur. Urol. 71, 68–78 (2017)

    Article  CAS  PubMed  Google Scholar 

  89. J. Kim et al., FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 36, 4072–4080 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. J. Mirosevich et al., Expression and role of Foxa proteins in prostate cancer. Prostate 66, 1013–1028 (2006)

    Article  CAS  PubMed  Google Scholar 

  91. J. Mirosevich, N. Gao, R.J. Matusik, Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate 62, 339–352 (2005)

    Article  CAS  PubMed  Google Scholar 

  92. P.L. Clermont et al., Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin. Epigenetics 7, 40 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. T. Sato et al., PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer. Sci. Rep. 3, 1911 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  94. J.J. Findeis-Hosey et al., High-grade neuroendocrine carcinomas of the lung highly express enhancer of zeste homolog 2, but carcinoids do not. Hum. Pathol. 42, 867–872 (2011)

    Article  CAS  PubMed  Google Scholar 

  95. A.P. Bracken, K. Helin, Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer 9, 773–784 (2009)

    Article  CAS  PubMed  Google Scholar 

  96. A. Kuzmichev et al., Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc. Natl. Acad. Sci. U. S. A. 102, 1859–1864 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. H. Richly, L. Aloia, L. Di Croce, Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis. 2, e204 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A. Laugesen, K. Helin, Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14, 735–751 (2014)

    Article  CAS  PubMed  Google Scholar 

  99. E. Conway, E. Healy, A.P. Bracken, PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr. Opin. Cell Biol. 37, 42–48 (2015)

    Article  CAS  PubMed  Google Scholar 

  100. P. Vizan, M. Beringer, C. Ballare, L. Di Croce, Role of PRC2-associated factors in stem cells and disease. FEBS J. 282, 1723–1735 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. A.P. Bracken, N. Dietrich, D. Pasini, K.H. Hansen, K. Helin, Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. H. Chen et al., Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. L.R. Bohrer, S. Chen, T.C. Hallstrom, H. Huang, Androgens suppress EZH2 expression via retinoblastoma (RB) and p130-dependent pathways: a potential mechanism of androgen-refractory progression of prostate cancer. Endocrinology 151, 5136–5145 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Y. Zhang et al., Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat. Commun. 9, 4080 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. B. Kleb et al., Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas. Epigenetics 11, 184–193 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  106. A.V. Sheahan, L. Ellis, Epigenetic reprogramming: a key mechanism driving therapeutic resistance. Urol. Oncol. 36, 375–379 (2018)

    Article  CAS  PubMed  Google Scholar 

  107. H.L. Tan et al., Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 20, 890–903 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. H. Beltran et al., Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 63, 920–926 (2013)

    Article  CAS  PubMed  Google Scholar 

  109. M. Peifer et al., Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 44, 1104–1110 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. H. Chen et al., Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr. Relat. Cancer 19, 321–331 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. A. Aparicio, R.B. Den, K.E. Knudsen, Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer. Nat. Rev. Urol. 8, 562–568 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. T. Chiaverotti et al., Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am. J. Pathol. 172, 236–246 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Z. Zhou et al., Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66, 7889–7898 (2006)

    Article  CAS  PubMed  Google Scholar 

  114. A.M. Pietersen et al., EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 10, R109 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. X. Tang et al., Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 23, 5759–5769 (2004)

    Article  CAS  PubMed  Google Scholar 

  116. A.P. Bracken et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. B.P. Coe et al., Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PLoS One 8, e71670 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. J.R. Miller, The Wnts. Genome Biol. 3, REVIEWS3001 (2002)

    PubMed  Google Scholar 

  119. Y. Kawano, R. Kypta, Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634 (2003)

    Article  CAS  PubMed  Google Scholar 

  120. J.N. Anastas, R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013)

    Article  CAS  PubMed  Google Scholar 

  121. J. Lilien, J. Balsamo, The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr. Opin. Cell Biol. 17, 459–465 (2005)

    Article  CAS  PubMed  Google Scholar 

  122. T. Muller, A. Choidas, E. Reichmann, A. Ullrich, Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J. Biol. Chem. 274, 10173–10183 (1999)

    Article  CAS  PubMed  Google Scholar 

  123. A. Herbst et al., Comprehensive analysis of beta-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling. BMC Genomics 15, 74 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  124. F. Yang et al., Linking beta-catenin to androgen-signaling pathway. J. Biol. Chem. 277, 11336–11344 (2002)

    Article  CAS  PubMed  Google Scholar 

  125. M.V. Hadjihannas et al., Aberrant Wnt/beta-catenin signaling can induce chromosomal instability in colon cancer. Proc. Natl. Acad. Sci. U. S. A. 103, 10747–10752 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. W. Giaretti et al., Chromosomal instability and APC gene mutations in human sporadic colorectal adenomas. J. Pathol. 204, 193–199 (2004)

    Article  CAS  PubMed  Google Scholar 

  127. L.E. Dow et al., Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 161, 1539–1552 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. M. Giannakis et al., RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. S. Seshagiri et al., Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Y. Wang et al., The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. J. Yeung et al., beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18, 606–618 (2010)

    Article  CAS  PubMed  Google Scholar 

  132. D. Lu et al., Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 101, 3118–3123 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. L. Wang et al., Somatic mutation as a mechanism of Wnt/beta-catenin pathway activation in CLL. Blood 124, 1089–1098 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. C.C. Liu, J. Prior, D. Piwnica-Worms, G. Bu, LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc. Natl. Acad. Sci. U. S. A. 107, 5136–5141 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. L.R. Howe, A.M. Brown, Wnt signaling and breast cancer. Cancer Biol. Ther. 3, 36–41 (2004)

    Article  CAS  PubMed  Google Scholar 

  136. S.Y. Lin et al., Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U. S. A. 97, 4262–4266 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. A.I. Khramtsov et al., Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 176, 2911–2920 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  138. A.S. Tsukamoto, R. Grosschedl, R.C. Guzman, T. Parslow, H.E. Varmus, Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988)

    Article  CAS  PubMed  Google Scholar 

  139. M. Klauzinska et al., Rspo2/Int7 regulates invasiveness and tumorigenic properties of mammary epithelial cells. J. Cell. Physiol. 227, 1960–1971 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. N.N. Yokoyama, S. Shao, B.H. Hoang, D. Mercola, X. Zi, Wnt signaling in castration-resistant prostate cancer: implications for therapy. Am. J. Clin. Exp. Urol. 2, 27–44 (2014)

    PubMed  PubMed Central  Google Scholar 

  141. R.M. Kypta, J. Waxman, Wnt/beta-catenin signalling in prostate cancer. Nat. Rev. Urol. 9, 418–428 (2012)

    Article  CAS  PubMed  Google Scholar 

  142. V. Murillo-Garzon, R. Kypta, WNT signalling in prostate cancer. Nat. Rev. Urol. 14, 683–696 (2017)

    Article  CAS  PubMed  Google Scholar 

  143. S. Thiele et al., Expression profile of WNT molecules in prostate cancer and its regulation by aminobisphosphonates. J. Cell. Biochem. 112, 1593–1600 (2011)

    Article  CAS  PubMed  Google Scholar 

  144. H. Zhu et al., Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res. 64, 7918–7926 (2004)

    Article  CAS  PubMed  Google Scholar 

  145. G. Chen et al., Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101, 1345–1356 (2004)

    Article  CAS  PubMed  Google Scholar 

  146. X. Wan et al., Activation of beta-catenin signaling in androgen receptor-negative prostate cancer cells. Clin. Cancer Res. 18, 726–736 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. A. de la Taille et al., Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clin. Cancer Res. 9, 1801–1807 (2003)

    PubMed  Google Scholar 

  148. Z. Zhang et al., Inhibition of the Wnt/beta-catenin pathway overcomes resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res. 78, 3147–3162 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  149. D. Lodygin, A. Epanchintsev, A. Menssen, J. Diebold, H. Hermeking, Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65, 4218–4227 (2005)

    Article  CAS  PubMed  Google Scholar 

  150. L.G. Horvath et al., Secreted frizzled-related protein 4 inhibits proliferation and metastatic potential in prostate cancer. Prostate 67, 1081–1090 (2007)

    Article  CAS  PubMed  Google Scholar 

  151. D.S. Yee et al., The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol. Cancer 9, 162 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. X. Zi et al., Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res. 65, 9762–9770 (2005)

    Article  CAS  PubMed  Google Scholar 

  153. B. Bierie et al., Activation of beta-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene 22, 3875–3887 (2003)

    Article  CAS  PubMed  Google Scholar 

  154. F. Gounari et al., Stabilization of beta-catenin induces lesions reminiscent of prostatic intraepithelial neoplasia, but terminal squamous transdifferentiation of other secretory epithelia. Oncogene 21, 4099–4107 (2002)

    Article  CAS  PubMed  Google Scholar 

  155. J.C. Francis, M.K. Thomsen, M.M. Taketo, A. Swain, beta-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 9, e1003180 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. X. Yu, Y. Wang, D.J. DeGraff, M.L. Wills, R.J. Matusik, Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model. Oncogene 30, 1868–1879 (2011)

    Article  CAS  PubMed  Google Scholar 

  157. F.G. Giancotti, Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. P.I. Croucher, M.M. McDonald, T.J. Martin, Bone metastasis: the importance of the neighbourhood. Nat. Rev. Cancer 16, 373–386 (2016)

    Article  CAS  PubMed  Google Scholar 

  159. Z.G. Li et al., Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone. Oncogene 27, 596–603 (2008)

    Article  CAS  PubMed  Google Scholar 

  160. D.R. Chesire, C.M. Ewing, J. Sauvageot, G.S. Bova, W.B. Isaacs, Detection and analysis of beta-catenin mutations in prostate cancer. Prostate 45, 323–334 (2000)

    Article  CAS  PubMed  Google Scholar 

  161. H.J. Voeller, C.I. Truica, E.P. Gelmann, Beta-catenin mutations in human prostate cancer. Cancer Res. 58, 2520–2523 (1998)

    CAS  PubMed  Google Scholar 

  162. P. Rajan et al., Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Eur. Urol. 66, 32–39 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. W.S. Chen et al., Genomic drivers of poor prognosis and enzalutamide resistance in metastatic castration-resistant prostate cancer. Eur. Urol. (2019). https://doi.org/10.1016/j.eururo.2019.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. L. Wang et al., A prospective genome-wide study of prostate cancer metastases reveals association of wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate-prednisone. Ann. Oncol. 29, 352–360 (2018)

    Article  CAS  PubMed  Google Scholar 

  165. M. Cojoc et al., Aldehyde dehydrogenase is regulated by beta-catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res. 75, 1482–1494 (2015)

    Article  CAS  PubMed  Google Scholar 

  166. M. Vesel et al., ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling. Respir. Res. 18, 52 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. M. Takeda et al., The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate 67, 955–967 (2007)

    Article  CAS  PubMed  Google Scholar 

  168. A.P. Lombard et al., ABCB1 mediates cabazitaxel-docetaxel cross-resistance in advanced prostate cancer. Mol. Cancer Ther. 16, 2257–2266 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. C.I. Truica, S. Byers, E.P. Gelmann, Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. 60, 4709–4713 (2000)

    CAS  PubMed  Google Scholar 

  170. L. Schweizer et al., The androgen receptor can signal through Wnt/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol. 9, 4 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Y. Li et al., LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion. Cancer Res. 69, 3332–3338 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. X. Yu et al., Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann. N. Y. Acad. Sci. 1061, 77–93 (2005)

    Article  CAS  PubMed  Google Scholar 

  173. J.W. Park, J.K. Lee, O.N. Witte, J. Huang, FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate. Mod. Pathol. 30(9), 1262–1272 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. T.J. Van Raay et al., Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina. Neuron 46, 23–36 (2005)

    Article  PubMed  CAS  Google Scholar 

  175. V.J. Wielenga et al., Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am. J. Pathol. 154, 515–523 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. R.A. Simon et al., CD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers. Hum. Pathol. 40, 252–258 (2009)

    Article  CAS  PubMed  Google Scholar 

  177. G.S. Palapattu et al., Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 69, 787–798 (2009)

    Article  CAS  PubMed  Google Scholar 

  178. D. ten Berge, S.A. Brugmann, J.A. Helms, R. Nusse, Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135, 3247–3257 (2008)

    Article  PubMed  CAS  Google Scholar 

  179. M. Ciarlo et al., Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. Int. J. Cancer 131, 582–590 (2012)

    Article  CAS  PubMed  Google Scholar 

  180. R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. K. Polyak, R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009)

    Article  CAS  PubMed  Google Scholar 

  182. E.J. Robson, W.T. Khaled, K. Abell, C.J. Watson, Epithelial-to-mesenchymal transition confers resistance to apoptosis in three murine mammary epithelial cell lines. Differentiation 74, 254–264 (2006)

    Article  CAS  PubMed  Google Scholar 

  183. C.J. Creighton et al., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. U. S. A. 106, 13820–13825 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. K.R. Fischer et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. X. Zheng et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. S.A. Mani et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. V.L. Battula et al., Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28, 1435–1445 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. J. Heuberger, W. Birchmeier, Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb. Perspect. Biol. 2, a002915 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  189. Z.Q. Wu et al., Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc. Natl. Acad. Sci. U. S. A. 109, 16654–16659 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. M. Conacci-Sorrell et al., Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J. Cell Biol. 163, 847–857 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. L.R. Howe, O. Watanabe, J. Leonard, A.M. Brown, Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 63, 1906–1913 (2003)

    CAS  PubMed  Google Scholar 

  192. C. Jamora, R. DasGupta, P. Kocieniewski, E. Fuchs, Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422, 317–322 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. H.C. Crawford et al., The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18, 2883–2891 (1999)

    Article  CAS  PubMed  Google Scholar 

  194. K. Kim, Z. Lu, E.D. Hay, Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol. Int. 26, 463–476 (2002)

    Article  CAS  PubMed  Google Scholar 

  195. K. Yang et al., The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab. Investig. 96, 116–136 (2016)

    Article  CAS  PubMed  Google Scholar 

  196. B.J. Merrill, Wnt pathway regulation of embryonic stem cell self-renewal. Cold Spring Harb. Perspect. Biol. 4, a007971 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. J.D. Holland, A. Klaus, A.N. Garratt, W. Birchmeier, Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254–264 (2013)

    Article  CAS  PubMed  Google Scholar 

  198. I. Malanchi et al., Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452, 650–653 (2008)

    Article  CAS  PubMed  Google Scholar 

  199. N. Sato, L. Meijer, L. Skaltsounis, P. Greengard, A.H. Brivanlou, Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004)

    Article  CAS  PubMed  Google Scholar 

  200. F. Lluis, E. Pedone, S. Pepe, M.P. Cosma, Periodic activation of Wnt/beta-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell 3, 493–507 (2008)

    Article  CAS  PubMed  Google Scholar 

  201. K. Hoffmeyer et al., Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336, 1549–1554 (2012)

    Article  CAS  PubMed  Google Scholar 

  202. J. Zeilstra et al., Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. Oncogene 33, 665–670 (2014)

    Article  CAS  PubMed  Google Scholar 

  203. M. Katoh, Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int. J. Oncol. 51, 1357–1369 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. B.E. Wang et al., Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration. Stem Cell Rep. 4, 768–779 (2015)

    Article  CAS  Google Scholar 

  205. C.S. Ontiveros, S.N. Salm, E.L. Wilson, Axin2 expression identifies progenitor cells in the murine prostate. Prostate 68, 1263–1272 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  206. E.J. Yun et al., Targeting cancer stem cells in castration-resistant prostate cancer. Clin. Cancer Res. 22, 670–679 (2016)

    Article  CAS  PubMed  Google Scholar 

  207. T. Reya et al., A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003)

    Article  CAS  PubMed  Google Scholar 

  208. N. Kawaguchi-Ihara, I. Murohashi, N. Nara, S. Tohda, Promotion of the self-renewal capacity of human acute leukemia cells by Wnt3A. Anticancer Res. 28, 2701–2704 (2008)

    CAS  PubMed  Google Scholar 

  209. I. Bisson, D.M. Prowse, WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19, 683–697 (2009)

    Article  CAS  PubMed  Google Scholar 

  210. K. Zhang et al., WNT/beta-catenin directs self-renewal symmetric cell division of hTERT(high) prostate cancer stem cells. Cancer Res. 77, 2534–2547 (2017)

    Article  CAS  PubMed  Google Scholar 

  211. B.A. Smith et al., A human adult stem cell signature marks aggressive variants across epithelial cancers. Cell Rep. 24, 3353–3366.e5 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. P. Sotomayor, A. Godoy, G.J. Smith, W.J. Huss, Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 69, 401–410 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. N. Monsef, M. Soller, M. Isaksson, P.A. Abrahamsson, I. Panagopoulos, The expression of pluripotency marker Oct 3/4 in prostate cancer and benign prostate hyperplasia. Prostate 69, 909–916 (2009)

    Article  CAS  PubMed  Google Scholar 

  214. A. Cueto, F. Burigana, A. Nicolini, F. Lugnani, Neuroendocrine tumors of the lung: hystological classification, diagnosis, traditional and new therapeutic approaches. Curr. Med. Chem. 21, 1107–1116 (2014)

    Article  CAS  PubMed  Google Scholar 

  215. M. Milanovic et al., Senescence-associated reprogramming promotes cancer stemness. Nature 553, 96–100 (2018)

    Article  CAS  PubMed  Google Scholar 

  216. D. Robinson et al., Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. J. Armenia et al., The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. A.W. Wyatt et al., Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2, 1598–1606 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  219. C. Wissmann et al., WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J. Pathol. 201, 204–212 (2003)

    Article  CAS  PubMed  Google Scholar 

  220. A.S. Perry et al., Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int. J. Cancer 132, 1771–1780 (2013)

    Article  CAS  PubMed  Google Scholar 

  221. L.G. Horvath et al., Membranous expression of secreted frizzled-related protein 4 predicts for good prognosis in localized prostate cancer and inhibits PC3 cellular proliferation in vitro. Clin. Cancer Res. 10, 615–625 (2004)

    Article  CAS  PubMed  Google Scholar 

  222. M.S. Joesting et al., Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res. 65, 10423–10430 (2005)

    Article  CAS  PubMed  Google Scholar 

  223. G. O’Hurley et al., The role of secreted frizzled-related protein 2 expression in prostate cancer. Histopathology 59, 1240–1248 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  224. Y. Zong et al., Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc. Natl. Acad. Sci. U. S. A. 109, E3395–E3404 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. O. Dakhova, D. Rowley, M. Ittmann, Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo. Clin. Cancer Res. 20, 100–109 (2014)

    Article  CAS  PubMed  Google Scholar 

  226. N. Carayol, C.Y. Wang, IKKalpha stabilizes cytosolic beta-catenin by inhibiting both canonical and non-canonical degradation pathways. Cell. Signal. 18, 1941–1946 (2006)

    Article  CAS  PubMed  Google Scholar 

  227. L. Yang, C. Lin, Z.R. Liu, P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127, 139–155 (2006)

    Article  CAS  PubMed  Google Scholar 

  228. V.R. Placencio et al., Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res. 68, 4709–4718 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. B.E. Wang, X.D. Wang, J.A. Ernst, P. Polakis, W.Q. Gao, Regulation of epithelial branching morphogenesis and cancer cell growth of the prostate by Wnt signaling. PLoS One 3, e2186 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. S. Kregel et al., Acquired resistance to the second-generation androgen receptor antagonist enzalutamide in castration-resistant prostate cancer. Oncotarget 7, 26259–26274 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  231. G. Wang, J. Wang, M.D. Sadar, Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res. 68, 9918–9927 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. E. Lee et al., Inhibition of androgen receptor and beta-catenin activity in prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 110, 15710–15715 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. J.A. Schneider, S.K. Logan, Revisiting the role of Wnt/beta-catenin signaling in prostate cancer. Mol. Cell. Endocrinol. 462, 3–8 (2018)

    Article  CAS  PubMed  Google Scholar 

  234. L. Antony, F. van der Schoor, S.L. Dalrymple, J.T. Isaacs, Androgen receptor (AR) suppresses normal human prostate epithelial cell proliferation via AR/beta-catenin/TCF-4 complex inhibition of c-MYC transcription. Prostate 74, 1118–1131 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. D.J. Mulholland, J.T. Read, P.S. Rennie, M.E. Cox, C.C. Nelson, Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis. Oncogene 22, 5602–5613 (2003)

    Article  CAS  PubMed  Google Scholar 

  236. D.R. Chesire, W.B. Isaacs, Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor. Oncogene 21, 8453–8469 (2002)

    Article  CAS  PubMed  Google Scholar 

  237. X.D. Wang et al., Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation 75, 219–234 (2007)

    Article  CAS  PubMed  Google Scholar 

  238. D.R. Chesire, C.M. Ewing, W.R. Gage, W.B. Isaacs, In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis. Oncogene 21, 2679–2694 (2002)

    Article  CAS  PubMed  Google Scholar 

  239. C. Lamberti et al., Regulation of beta-catenin function by the IkappaB kinases. J. Biol. Chem. 276, 42276–42286 (2001)

    Article  CAS  PubMed  Google Scholar 

  240. F. Ma et al., SOX9 drives WNT pathway activation in prostate cancer. J. Clin. Invest. 126, 1745–1758 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  241. X. Wu et al., Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133, 340–353 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. S. Persad, A.A. Troussard, T.R. McPhee, D.J. Mulholland, S. Dedhar, Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol. 153, 1161–1174 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. D.S. Byun et al., Intestinal epithelial-specific PTEN inactivation results in tumor formation. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G856–G864 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. M.T. Jefferies et al., PTEN loss and activation of K-RAS and beta-catenin cooperate to accelerate prostate tumourigenesis. J. Pathol. 243, 442–456 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. F.X. Yu, B. Zhao, K.L. Guan, Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. U. Ehmer, J. Sage, Control of proliferation and cancer growth by the Hippo signaling pathway. Mol. Cancer Res. 14, 127–140 (2016)

    Article  CAS  PubMed  Google Scholar 

  247. T. Ito et al., Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci. 107, 1527–1538 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. G. Kuser-Abali, A. Alptekin, M. Lewis, I.P. Garraway, B. Cinar, YAP1 and AR interactions contribute to the switch from androgen-dependent to castration-resistant growth in prostate cancer. Nat. Commun. 6, 8126 (2015)

    Article  PubMed  Google Scholar 

  249. L. Zhang et al., The Hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol. Cell. Biol. 35, 1350–1362 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. L. Azzolin et al., Role of TAZ as mediator of Wnt signaling. Cell 151, 1443–1456 (2012)

    Article  CAS  PubMed  Google Scholar 

  251. T. Heallen et al., Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. J. Rosenbluh et al., beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. L. Azzolin et al., YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014)

    Article  CAS  PubMed  Google Scholar 

  254. X. Varelas et al., The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 18, 579–591 (2010)

    Article  CAS  PubMed  Google Scholar 

  255. S.W. Plouffe et al., The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J. Biol. Chem. 293, 11230–11240 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. E.R. Barry et al., Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013)

    Article  PubMed  CAS  Google Scholar 

  257. N. Takebe et al., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12, 445–464 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. R. Nusse, H. Clevers, Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017)

    Article  CAS  PubMed  Google Scholar 

  259. K.H. Emami et al., A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc. Natl. Acad. Sci. U. S. A. 101, 12682–12687 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. H.J. Lenz, M. Kahn, Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci. 105, 1087–1092 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. M. Chen et al., The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry 48, 10267–10274 (2009)

    Article  CAS  PubMed  Google Scholar 

  262. J. Shan, D.L. Shi, J. Wang, J. Zheng, Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry 44, 15495–15503 (2005)

    Article  CAS  PubMed  Google Scholar 

  263. C.H. Park et al., Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun. 328, 227–234 (2005)

    Article  CAS  PubMed  Google Scholar 

  264. W. Fiskus et al., Pre-clinical efficacy of combined therapy with novel beta-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia 29, 1267–1278 (2015)

    Article  CAS  PubMed  Google Scholar 

  265. K. Sukhdeo et al., Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc. Natl. Acad. Sci. U. S. A. 104, 7516–7521 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  266. B. Chen et al., Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. B. Garcia-Reyes et al., Discovery of inhibitor of Wnt production 2 (IWP-2) and related compounds as selective ATP-competitive inhibitors of casein kinase 1 (CK1) delta/epsilon. J. Med. Chem. 61, 4087–4102 (2018)

    Article  CAS  PubMed  Google Scholar 

  268. J. Liu et al., Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. U. S. A. 110, 20224–20229 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. K.D. Proffitt et al., Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res. 73, 502–507 (2013)

    Article  CAS  PubMed  Google Scholar 

  270. S.M. Huang et al., Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuping Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeh, Y. et al. (2019). Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_16

Download citation

Publish with us

Policies and ethics