Skip to main content

Androgen Receptor Dependence

  • Chapter
  • First Online:
Book cover Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1210))

Abstract

Androgens and the androgen receptor (AR) play crucial roles in the biology of normal and diseased prostate tissue, including prostate cancer (PCa). This dependence is evidenced by the use of androgen depletion therapy (ADT) as the primary treatment for locally advanced, metastatic, or relapsed PCa. This dependence is further evidenced by the various mechanisms employed by PCa cells to re-activate the AR to circumvent the growth-inhibitory effects of ADT. Re-activation of the AR during ADT is central to the disease evolving into the lethal castration resistant PCa (CRPC) phenotype, which is responsible for nearly all PCa mortality. Thus, understanding the regulation of AR and AR signaling is important for understanding the development and progression of PCa. This understanding provides the foundation for development of newer approaches for targeting CRPC therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Heinlein, C. Chang, Androgen receptor in prostate cancer. Endocr. Rev. 25(2), 276–308 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. M.H. Tan et al., Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36(1), 3–23 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. L. Callewaert, N. Van Tilborgh, F. Claessens, Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res. 66(1), 543–553 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. C.L. Bevan et al., The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol. Cell. Biol. 19(12), 8383–8392 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Jenster et al., Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J. Biol. Chem. 270(13), 7341–7346 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. V. Christiaens et al., Characterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control. J. Biol. Chem. 277(51), 49230–49237 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. S.M. Dehm, D.J. Tindall, Alternatively spliced androgen receptor variants. Endocr. Relat. Cancer 18(5), R183–R196 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Warnmark et al., Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol. Endocrinol. 17(10), 1901–1909 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. I.J. McEwan, Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr. Relat. Cancer 11(2), 281–293 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. N.L. Chamberlain, D.C. Whitacre, R.L. Miesfeld, Delineation of two distinct type 1 activation functions in the androgen receptor amino-terminal domain. J. Biol. Chem. 271(43), 26772–26778 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. P. Zhu et al., Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124(3), 615–629 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. S.M. Dehm et al., Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res. 67(20), 10067–10077 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. E. De Mol et al., Regulation of androgen receptor activity by transient interactions of its transactivation domain with general transcription regulators. Structure 26(1), 145–152.e3 (2018)

    Article  PubMed  CAS  Google Scholar 

  14. B. He, J.A. Kemppainen, E.M. Wilson, FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 275(30), 22986–22994 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. B. He et al., Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction. J. Biol. Chem. 277(28), 25631–25639 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. D. Xu et al., Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res. 75(17), 3663–3671 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P.L. Shaffer et al., Structural basis of androgen receptor binding to selective androgen response elements. Proc. Natl. Acad. Sci. U. S. A. 101(14), 4758–4763 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Nadal et al., Structure of the homodimeric androgen receptor ligand-binding domain. Nat. Commun. 8, 14388 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Estebanez-Perpina et al., A surface on the androgen receptor that allosterically regulates coactivator binding. Proc. Natl. Acad. Sci. U. S. A. 104(41), 16074–16079 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Grosdidier et al., Allosteric conversation in the androgen receptor ligand-binding domain surfaces. Mol. Endocrinol. 26(7), 1078–1090 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. W. Gao, C.E. Bohl, J.T. Dalton, Chemistry and structural biology of androgen receptor. Chem. Rev. 105(9), 3352–3370 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K. Pereira de Jesus-Tran et al., Comparison of crystal structures of human androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants responsible for binding affinity. Protein Sci. 15(5), 987–999 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. H.M. Berman et al., The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. E.M. Wilson, Analysis of interdomain interactions of the androgen receptor. Methods Mol. Biol. 776, 113–129 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A.J. Saporita et al., Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J. Biol. Chem. 278(43), 41998–42005 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. A. Haelens et al., The hinge region regulates DNA binding, nuclear translocation, and transactivation of the androgen receptor. Cancer Res. 67(9), 4514–4523 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. T. Nishiyama, Serum testosterone levels after medical or surgical androgen deprivation: a comprehensive review of the literature. Urol. Oncol. 32(1), 38.e17–38.e28 (2014)

    Article  CAS  Google Scholar 

  28. C. Dai, H. Heemers, N. Sharifi, Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 7(9), a030452 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. N. Sharifi, R.J. Auchus, Steroid biosynthesis and prostate cancer. Steroids 77(7), 719–726 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. N. Kaku et al., Characterization of nuclear import of the domain-specific androgen receptor in association with the importin alpha/beta and Ran-guanosine 5′-triphosphate systems. Endocrinology 149(8), 3960–3969 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. Ni et al., Androgen induces a switch from cytoplasmic retention to nuclear import of the androgen receptor. Mol. Cell. Biol. 33(24), 4766–4778 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M.L. Cutress et al., Structural basis for the nuclear import of the human androgen receptor. J. Cell Sci. 121(Pt 7), 957–968 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. C.E. Massie et al., The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30(13), 2719–2733 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F. Claessens, S. Joniau, C. Helsen, Comparing the rules of engagement of androgen and glucocorticoid receptors. Cell. Mol. Life Sci. 74(12), 2217–2228 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Sahu et al., Androgen receptor uses relaxed response element stringency for selective chromatin binding and transcriptional regulation in vivo. Nucleic Acids Res. 42(7), 4230–4240 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N.L. Sharma et al., The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23(1), 35–47 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. M.M. Pomerantz et al., The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat. Genet. 47(11), 1346–1351 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. I.G. Mills, Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat. Rev. Cancer 14(3), 187–198 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. B.T. Copeland et al., The androgen receptor malignancy shift in prostate cancer. Prostate 78(7), 521–531 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. H.V. Heemers, D.J. Tindall, Unraveling the complexities of androgen receptor signaling in prostate cancer cells. Cancer Cell 15(4), 245–247 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H.V. Heemers, D.J. Tindall, Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28(7), 778–808 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. C. Foley, N. Mitsiades, Moving beyond the androgen receptor (AR): targeting AR-interacting proteins to treat prostate cancer. Horm. Cancer 7(2), 84–103 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S.M. Dehm, D.J. Tindall, Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J. Biol. Chem. 281(38), 27882–27893 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. S. Balasubramaniam et al., Aberrant BAF57 signaling facilitates prometastatic phenotypes. Clin. Cancer Res. 19(10), 2657–2667 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. T. Dadaev et al., Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 9(1), 2256 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. M.A. Augello, R.B. Den, K.E. Knudsen, AR function in promoting metastatic prostate cancer. Cancer Metastasis Rev. 33(2–3), 399–411 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. N. Gao et al., The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol. Endocrinol. 17(8), 1484–1507 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. C. Jung et al., HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res. 64(24), 9185–9192 (2004)

    Article  CAS  PubMed  Google Scholar 

  49. T. Whitington et al., Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nat. Genet. 48(4), 387–397 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. J.L. Robinson, K.A. Holmes, J.S. Carroll, FOXA1 mutations in hormone-dependent cancers. Front. Oncol. 3, 20 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  51. C.E. Barbieri et al., Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44(6), 685–689 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. C.S. Grasso et al., The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406), 239–243 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Paltoglou et al., Novel androgen receptor coregulator GRHL2 exerts both oncogenic and antimetastatic functions in prostate cancer. Cancer Res. 77(13), 3417–3430 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S. Stelloo et al., Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene 37(3), 313–322 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. S. Liu et al., A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. Elife 6, e28482 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  56. C. Huggins, C.V. Hodges, Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J. Clin. 22(4), 232–240 (1972)

    Article  CAS  PubMed  Google Scholar 

  57. L.J. Schmidt, D.J. Tindall, Androgen receptor: past, present and future. Curr. Drug Targets 14(4), 401–407 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. P.A. Watson, V.K. Arora, C.L. Sawyers, Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15(12), 701–711 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. K.E. Knudsen, W.K. Kelly, Outsmarting androgen receptor: creative approaches for targeting aberrant androgen signaling in advanced prostate cancer. Expert. Rev. Endocrinol. Metab. 6(3), 483–493 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. T. Visakorpi et al., In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9(4), 401–406 (1995)

    Article  CAS  PubMed  Google Scholar 

  61. P. Koivisto et al., Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57(2), 314–319 (1997)

    CAS  PubMed  Google Scholar 

  62. C.D. Chen et al., Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10(1), 33–39 (2004)

    Article  PubMed  CAS  Google Scholar 

  63. Cancer Genome Atlas Research Network, The molecular taxonomy of primary prostate cancer. Cell 163(4), 1011–1025 (2015)

    Article  CAS  Google Scholar 

  64. G. Gundem et al., The evolutionary history of lethal metastatic prostate cancer. Nature 520(7547), 353–357 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. A.A. Azad et al., Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 21(10), 2315–2324 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. S. Carreira et al., Tumor clone dynamics in lethal prostate cancer. Sci. Transl. Med. 6(254), 254ra125 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. M.E. Taplin et al., Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59(11), 2511–2515 (1999)

    CAS  PubMed  Google Scholar 

  68. B.S. Taylor et al., Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1), 11–22 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. X.Y. Zhao et al., Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med. 6(6), 703–706 (2000)

    Article  CAS  PubMed  Google Scholar 

  70. D.Y. Takeda et al., A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. Cell 174(2), 422–432.e13 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. S.R. Viswanathan et al., Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174(2), 433–447.e19 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. D.A. Quigley et al., Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 175(3), 889 (2018)

    Article  CAS  PubMed  Google Scholar 

  73. S.M. Dehm et al., Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68(13), 5469–5477 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. K.M. Wadosky, S. Koochekpour, Androgen receptor splice variants and prostate cancer: from bench to bedside. Oncotarget 8(11), 18550–18576 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  75. A. Paschalis et al., Alternative splicing in prostate cancer. Nat. Rev. Clin. Oncol. 15(11), 663–675 (2018)

    Article  CAS  PubMed  Google Scholar 

  76. A. Sharp et al., Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest. 129(1), 192–208 (2019)

    Article  PubMed  Google Scholar 

  77. E.S. Antonarakis et al., Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis. 19(3), 231–241 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. H.I. Scher et al., Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2(11), 1441–1449 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  79. M. Kohli et al., Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res. 23(16), 4704–4715 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. E.S. Antonarakis et al., AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371(11), 1028–1038 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. E.S. Antonarakis et al., Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 1(5), 582–591 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  82. H.I. Scher et al., Assessment of the validity of nuclear-localized androgen receptor splice variant 7 in circulating tumor cells as a predictive biomarker for castration-resistant prostate cancer. JAMA Oncol. 4(9), 1179–1186 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  83. E.A. Mostaghel et al., Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 67(10), 5033–5041 (2007)

    Article  CAS  PubMed  Google Scholar 

  84. D. Robinson et al., Integrative clinical genomics of advanced prostate cancer. Cell 161(5), 1215–1228 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. D.T. Miyamoto et al., RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349(6254), 1351–1356 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. T. van der Steen, D.J. Tindall, H. Huang, Posttranslational modification of the androgen receptor in prostate cancer. Int. J. Mol. Sci. 14(7), 14833–14859 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. P.A. Watson et al., Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc. Natl. Acad. Sci. U. S. A. 107(39), 16759–16765 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Y. Yamamoto et al., Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth. Clin. Cancer Res. 21(7), 1675–1687 (2015)

    Article  CAS  PubMed  Google Scholar 

  89. C. Henzler et al., Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat. Commun. 7, 13668 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. R. Hu et al., Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 72(14), 3457–3462 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. A.A. Shafi et al., Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 6(31), 31997–32012 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  92. S.C. Chan et al., Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res. 43(12), 5880–5897 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. S.C. Chan, Y. Li, S.M. Dehm, Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal. J. Biol. Chem. 287(23), 19736–19749 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. S. Baron et al., Androgen receptor mediates non-genomic activation of phosphatidylinositol 3-OH kinase in androgen-sensitive epithelial cells. J. Biol. Chem. 279(15), 14579–14586 (2004)

    Article  CAS  PubMed  Google Scholar 

  95. J.R. Graff et al., Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J. Biol. Chem. 275(32), 24500–24505 (2000)

    Article  CAS  PubMed  Google Scholar 

  96. L. Xin et al., Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc. Natl. Acad. Sci. U. S. A. 103(20), 7789–7794 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. L. Yang et al., Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate, FOXO3a, and their roles in apoptosis of LNCaP prostate cancer cells. J. Biol. Chem. 280(39), 33558–33565 (2005)

    Article  CAS  PubMed  Google Scholar 

  98. P. Liu et al., A transcription-independent function of FOXO1 in inhibition of androgen-independent activation of the androgen receptor in prostate cancer cells. Cancer Res. 68(24), 10290–10299 (2008)

    Article  CAS  PubMed  Google Scholar 

  99. J.K. Leung, M.D. Sadar, Non-genomic actions of the androgen receptor in prostate cancer. Front. Endocrinol. (Lausanne) 8, 2 (2017)

    Article  Google Scholar 

  100. D.J. Mulholland et al., Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 19(6), 792–804 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. B.S. Carver et al., Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19(5), 575–586 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. D.E. Frigo et al., Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol. Endocrinol. 23(9), 1385–1396 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Y.X. Sun et al., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J. Cell. Biochem. 89(3), 462–473 (2003)

    Article  CAS  PubMed  Google Scholar 

  104. E. Olokpa, P.E. Moss, L.V. Stewart, Crosstalk between the androgen receptor and PPAR gamma signaling pathways in the prostate. PPAR Res. 2017, 9456020 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. C. Elix, S.K. Pal, J.O. Jones, The role of peroxisome proliferator-activated receptor gamma in prostate cancer. Asian J. Androl. 20(3), 238–243 (2018)

    Article  CAS  PubMed  Google Scholar 

  106. M. Shiota et al., Peroxisome proliferator-activated receptor gamma coactivator-1alpha interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol. Endocrinol. 24(1), 114–127 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. E. Olokpa, A. Bolden, L.V. Stewart, The androgen receptor regulates PPARgamma expression and activity in human prostate cancer cells. J. Cell. Physiol. 231(12), 2664–2672 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Z. Bao et al., A novel cutaneous Fatty Acid-binding protein-related signaling pathway leading to malignant progression in prostate cancer cells. Genes Cancer 4(7–8), 297–314 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. E. Mueller et al., Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 97(20), 10990–10995 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. J.I. Hisatake et al., Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res. 60(19), 5494–5498 (2000)

    CAS  PubMed  Google Scholar 

  111. I. Ahmad et al., Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 113(29), 8290–8295 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. B.Y. Tew et al., Vitamin K epoxide reductase regulation of androgen receptor activity. Oncotarget 8(8), 13818–13831 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  113. P.E. Moss, B.E. Lyles, L.V. Stewart, The PPARgamma ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells. Exp. Cell Res. 316(20), 3478–3488 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. S. Rogenhofer et al., Enhanced expression of peroxisome proliferate-activated receptor gamma (PPAR-gamma) in advanced prostate cancer. Anticancer Res. 32(8), 3479–3483 (2012)

    CAS  PubMed  Google Scholar 

  115. Y. Segawa et al., Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer. Prostate 51(2), 108–116 (2002)

    Article  CAS  PubMed  Google Scholar 

  116. T. Nishiyama, Y. Hashimoto, K. Takahashi, The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin. Cancer Res. 10(21), 7121–7126 (2004)

    Article  CAS  PubMed  Google Scholar 

  117. R.B. Montgomery et al., Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68(11), 4447–4454 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Y. Ho, S.M. Dehm, Androgen receptor rearrangement and splicing variants in resistance to endocrine therapies in prostate cancer. Endocrinology 158(6), 1533–1542 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  119. T. Chandrasekar et al., Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 4(3), 365–380 (2015)

    PubMed  PubMed Central  Google Scholar 

  120. H.I. Scher et al., Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367(13), 1187–1197 (2012)

    Article  CAS  PubMed  Google Scholar 

  121. J.S. de Bono et al., Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364(21), 1995–2005 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  122. Z. Li et al., Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 523(7560), 347–351 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. K.H. Chang et al., Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 108(33), 13728–13733 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. C. Liu et al., Inhibition of AKR1C3 activation overcomes resistance to abiraterone in advanced prostate cancer. Mol. Cancer Ther. 16(1), 35–44 (2017)

    Article  CAS  PubMed  Google Scholar 

  125. H. Liu et al., Molecular dynamics studies on the enzalutamide resistance mechanisms induced by androgen receptor mutations. J. Cell. Biochem. 118(9), 2792–2801 (2017)

    Article  CAS  PubMed  Google Scholar 

  126. Z. Culig, Molecular mechanisms of enzalutamide resistance in prostate cancer. Curr. Mol. Biol. Rep. 3(4), 230–235 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  127. J.S. Schneekloth Jr. et al., Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126(12), 3748–3754 (2004)

    Article  CAS  PubMed  Google Scholar 

  128. A. Rodriguez-Gonzalez et al., Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27(57), 7201–7211 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. J. Salami et al., Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol. 1, 100 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. K. Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 113(26), 7124–7129 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. S. Ponnusamy et al., Novel selective agents for the degradation of androgen receptor variants to treat castration-resistant prostate cancer. Cancer Res. 77(22), 6282–6298 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. C. Liu et al., Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 20(12), 3198–3210 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. C. Liu et al., Niclosamide enhances abiraterone treatment via inhibition of androgen receptor variants in castration resistant prostate cancer. Oncotarget 7(22), 32210–32220 (2016)

    PubMed  PubMed Central  Google Scholar 

  134. C. Liu et al., Niclosamide suppresses cell migration and invasion in enzalutamide resistant prostate cancer cells via Stat3-AR axis inhibition. Prostate 75(13), 1341–1353 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. C. Liu et al., Niclosamide and bicalutamide combination treatment overcomes enzalutamide- and bicalutamide-resistant prostate cancer. Mol. Cancer Ther. 16(8), 1521–1530 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. J.T. De Leon et al., Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc. Natl. Acad. Sci. U. S. A. 108(29), 11878–11883 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  137. G. Buchanan et al., Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res. 67(20), 10087–10096 (2007)

    Article  CAS  PubMed  Google Scholar 

  138. L.K. Philp et al., SGTA: a new player in the molecular co-chaperone game. Horm. Cancer 4(6), 343–357 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. N. Lallous et al., Targeting binding function-3 of the androgen receptor blocks its co-chaperone interactions, nuclear translocation, and activation. Mol. Cancer Ther. 15(12), 2936–2945 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. R.J. Andersen et al., Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17(6), 535–546 (2010)

    Article  CAS  PubMed  Google Scholar 

  141. J.K. Myung et al., An androgen receptor N-terminal domain antagonist for treating prostate cancer. J. Clin. Invest. 123(7), 2948–2960 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. M.D. Sadar et al., Sintokamides A to E, chlorinated peptides from the sponge Dysidea sp. that inhibit transactivation of the N-terminus of the androgen receptor in prostate cancer cells. Org. Lett. 10(21), 4947–4950 (2008)

    Article  CAS  PubMed  Google Scholar 

  143. L.J. Brand et al., EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer. Oncotarget 6(6), 3811–3824 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  144. K. Dalal et al., Selectively targeting the DNA-binding domain of the androgen receptor as a prospective therapy for prostate cancer. J. Biol. Chem. 289(38), 26417–26429 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. K. Dalal et al., Bypassing drug resistance mechanisms of prostate cancer with small molecules that target androgen receptor-chromatin interactions. Mol. Cancer Ther. 16(10), 2281–2291 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. K. Dalal et al., Selectively targeting the dimerization interface of human androgen receptor with small-molecules to treat castration-resistant prostate cancer. Cancer Lett. 437, 35–43 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Dehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaturvedi, A.P., Dehm, S.M. (2019). Androgen Receptor Dependence. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_15

Download citation

Publish with us

Policies and ethics