Skip to main content

Prostate Cancer Energetics and Biosynthesis

  • Chapter
  • First Online:
Book cover Prostate Cancer

Abstract

Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Warburg, On the origin of cancer cells. Science 123(3191), 309–314 (1956). https://doi.org/10.1126/science.123.3191.309

    Article  CAS  PubMed  Google Scholar 

  2. O. Warburg, F. Wind, E. Negelein, The metabolism of tumors in the body. J. Gen. Physiol. 8(6), 519–530 (1927). https://doi.org/10.1085/jgp.8.6.519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. L.C. Costello, R.B. Franklin, A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch. Biochem. Biophys. 611, 100–112 (2016). https://doi.org/10.1016/j.abb.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L.C. Costello, R.B. Franklin, P. Feng, Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5(3), 143–153 (2005). https://doi.org/10.1016/j.mito.2005.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L.C. Costello, R.B. Franklin, Zinc is decreased in prostate cancer: an established relationship of prostate cancer. J. Biol. Inorg. Chem. 16(1), 3–8 (2011). https://doi.org/10.1007/s00775-010-0736-9

    Article  CAS  PubMed  Google Scholar 

  7. L.C. Costello, R.B. Franklin, Aconitase activity, citrate oxidation, and zinc inhibition in rat ventral prostate. Enzyme 26(6), 281–287 (1981). https://doi.org/10.1159/000459195

    Article  CAS  PubMed  Google Scholar 

  8. L.C. Costello, R.B. Franklin, Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35(4), 285–296 (1998). https://doi.org/10.1002/(SICI)1097-0045(19980601)35:4<285::AID-PROS8>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  9. L.C. Costello, R.B. Franklin, The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol. Cancer 5, 17 (2006). https://doi.org/10.1186/1476-4598-5-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. L.C. Costello, Y. Liu, R.B. Franklin, M.C. Kennedy, Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J. Biol. Chem. 272(46), 28875–28881 (1997). https://doi.org/10.1074/jbc.272.46.28875

    Article  CAS  PubMed  Google Scholar 

  11. M.M. Desouki, J. Geradts, B. Milon, R.B. Franklin, L.C. Costello, hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol. Cancer 6, 37 (2007). https://doi.org/10.1186/1476-4598-6-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R.B. Franklin, P. Feng, B. Milon, M.M. Desouki, K.K. Singh, A. Kajdacsy-Balla, O. Bagasra, L.C. Costello, hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol. Cancer 4, 32 (2005). https://doi.org/10.1186/1476-4598-4-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M.C. Franz, P. Anderle, M. Burzle, Y. Suzuki, M.R. Freeman, M.A. Hediger, G. Kovacs, Zinc transporters in prostate cancer. Mol. Aspects Med. 34(2-3), 735–741 (2013). https://doi.org/10.1016/j.mam.2012.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Eidelman, J. Twum-Ampofo, J. Ansari, M.M. Siddiqui, The metabolic phenotype of prostate cancer. Front. Oncol. 7, 131 (2017). https://doi.org/10.3389/fonc.2017.00131

    Article  PubMed  PubMed Central  Google Scholar 

  15. P. Feng, J.Y. Liang, T.L. Li, Z.X. Guan, J. Zou, R. Franklin, L.C. Costello, Zinc induces mitochondria apoptogenesis in prostate cells. Mol. Urol. 4(1), 31–36 (2000)

    CAS  PubMed  Google Scholar 

  16. P. Feng, T.L. Li, Z.X. Guan, R.B. Franklin, L.C. Costello, Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 52(4), 311–318 (2002). https://doi.org/10.1002/pros.10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R.B. Franklin, L.C. Costello, Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch. Biochem. Biophys. 463(2), 211–217 (2007). https://doi.org/10.1016/j.abb.2007.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. F. Cutruzzola, G. Giardina, M. Marani, A. Macone, A. Paiardini, S. Rinaldo, A. Paone, Glucose metabolism in the progression of prostate cancer. Front. Physiol. 8, 97 (2017). https://doi.org/10.3389/fphys.2017.00097

    Article  PubMed  PubMed Central  Google Scholar 

  19. I. Rishi, H. Baidouri, J.A. Abbasi, R. Bullard-Dillard, A. Kajdacsy-Balla, J.P. Pestaner, M. Skacel, R. Tubbs, O. Bagasra, Prostate cancer in African American men is associated with downregulation of zinc transporters. Appl. Immunohistochem. Mol. Morphol. 11(3), 253–260 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. P.B. Makhov, K.V. Golovine, A. Kutikov, D.J. Canter, V.A. Rybko, D.A. Roshchin, V.B. Matveev, R.G. Uzzo, V.M. Kolenko, Reversal of epigenetic silencing of AP-2alpha results in increased zinc uptake in DU-145 and LNCaP prostate cancer cells. Carcinogenesis 32(12), 1773–1781 (2011). https://doi.org/10.1093/carcin/bgr212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Latonen, E. Afyounian, A. Jylha, J. Nattinen, U. Aapola, M. Annala, K.K. Kivinummi, T.T.L. Tammela, R.W. Beuerman, H. Uusitalo, M. Nykter, T. Visakorpi, Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat. Commun. 9(1), 1176 (2018). https://doi.org/10.1038/s41467-018-03573-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. K. Naruse, Y. Yamada, S. Aoki, T. Taki, K. Nakamura, M. Tobiume, K. Zennami, R. Katsuda, S. Sai, Y. Nishio, Y. Inoue, H. Noguchi, N. Hondai, Lactate dehydrogenase is a prognostic indicator for prostate cancer patients with bone metastasis. Hinyokika Kiyo 53(5), 287–292 (2007)

    PubMed  Google Scholar 

  23. I. Elia, R. Schmieder, S. Christen, S.M. Fendt, Organ-specific cancer metabolism and its potential for therapy. Handb. Exp. Pharmacol. 233, 321–353 (2016). https://doi.org/10.1007/164_2015_10

    Article  CAS  PubMed  Google Scholar 

  24. J. Wang, J. Li, X. Li, S. Peng, J. Li, W. Yan, Y. Cui, H. Xiao, X. Wen, Increased expression of glycolytic enzymes in prostate cancer tissues and association with Gleason score. Int. J. Clin. Exp. Pathol. 10(11), 11080–11089 (2017)

    PubMed  PubMed Central  Google Scholar 

  25. H. Xiao, J. Wang, W. Yan, Y. Cui, Z. Chen, X. Gao, X. Wen, J. Chen, GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate 78(2), 86–94 (2018). https://doi.org/10.1002/pros.23448

    Article  CAS  PubMed  Google Scholar 

  26. J. Jans, J.H. van Dijk, S. van Schelven, P. van der Groep, S.H. Willems, T.N. Jonges, P.J. van Diest, J.L. Bosch, Expression and localization of hypoxia proteins in prostate cancer: prognostic implications after radical prostatectomy. Urology 75(4), 786–792 (2010). https://doi.org/10.1016/j.urology.2009.08.024

    Article  PubMed  Google Scholar 

  27. C.V. Vaz, M.G. Alves, R. Marques, P.I. Moreira, P.F. Oliveira, C.J. Maia, S. Socorro, Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int. J. Biochem. Cell Biol. 44(11), 2077–2084 (2012). https://doi.org/10.1016/j.biocel.2012.08.013

    Article  CAS  PubMed  Google Scholar 

  28. P. Gonzalez-Menendez, D. Hevia, R. Alonso-Arias, A. Alvarez-Artime, A. Rodriguez-Garcia, S. Kinet, I. Gonzalez-Pola, N. Taylor, J.C. Mayo, R.M. Sainz, GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol. 17, 112–127 (2018). https://doi.org/10.1016/j.redox.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M.A. White, E. Tsouko, C. Lin, K. Rajapakshe, J.M. Spencer, S.R. Wilkenfeld, S.S. Vakili, T.L. Pulliam, D. Awad, F. Nikolos, R.R. Katreddy, B.A. Kaipparettu, A. Sreekumar, X. Zhang, E. Cheung, C. Coarfa, D.E. Frigo, GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling. Endocr. Relat. Cancer 25(4), 453–469 (2018). https://doi.org/10.1530/ERC-17-0051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. Gonzalez-Menendez, D. Hevia, J.C. Mayo, R.M. Sainz, The dark side of glucose transporters in prostate cancer: are they a new feature to characterize carcinomas? Int. J. Cancer 142(12), 2414–2424 (2018). https://doi.org/10.1002/ijc.31165

    Article  CAS  PubMed  Google Scholar 

  31. N. Pertega-Gomes, S. Felisbino, C.E. Massie, J.R. Vizcaino, R. Coelho, C. Sandi, S. Simoes-Sousa, S. Jurmeister, A. Ramos-Montoya, M. Asim, M. Tran, E. Oliveira, A. Lobo da Cunha, V. Maximo, F. Baltazar, D.E. Neal, L.G. Fryer, A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol. 236(4), 517–530 (2015). https://doi.org/10.1002/path.4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Deng, J. Lu, Targeting hexokinase 2 in castration-resistant prostate cancer. Mol. Cell. Oncol. 2(3), e974465 (2015). https://doi.org/10.4161/23723556.2014.974465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Wang, H. Xiong, F. Wu, Y. Zhang, J. Wang, L. Zhao, X. Guo, L.J. Chang, Y. Zhang, M.J. You, S. Koochekpour, M. Saleem, H. Huang, J. Lu, Y. Deng, Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 8(5), 1461–1474 (2014). https://doi.org/10.1016/j.celrep.2014.07.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Zhou, W.G. Chen, X.W. Li, MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer. Am. J. Cancer Res. 5(6), 2056–2063 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. P.L. Martin, J.J. Yin, V. Seng, O. Casey, E. Corey, C. Morrissey, R.M. Simpson, K. Kelly, Androgen deprivation leads to increased carbohydrate metabolism and hexokinase 2-mediated survival in Pten/Tp53-deficient prostate cancer. Oncogene 36(4), 525–533 (2017). https://doi.org/10.1038/onc.2016.223

    Article  CAS  PubMed  Google Scholar 

  36. T. Tao, M. Chen, R. Jiang, H. Guan, Y. Huang, H. Su, Q. Hu, X. Han, J. Xiao, Involvement of EZH2 in aerobic glycolysis of prostate cancer through miR-181b/HK2 axis. Oncol. Rep. 37(3), 1430–1436 (2017). https://doi.org/10.3892/or.2017.5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J.S. Moon, W.J. Jin, J.H. Kwak, H.J. Kim, M.J. Yun, J.W. Kim, S.W. Park, K.S. Kim, Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem. J. 433(1), 225–233 (2011). https://doi.org/10.1042/BJ20101104

    Article  CAS  PubMed  Google Scholar 

  38. K.C. Patra, Q. Wang, P.T. Bhaskar, L. Miller, Z. Wang, W. Wheaton, N. Chandel, M. Laakso, W.J. Muller, E.L. Allen, A.K. Jha, G.A. Smolen, M.F. Clasquin, B. Robey, N. Hay, Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2), 213–228 (2013). https://doi.org/10.1016/j.ccr.2013.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. P.W. Stacpoole, Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J. Natl. Cancer Inst. 109(11) (2017). https://doi.org/10.1093/jnci/djx071

  40. E. Kolobova, A. Tuganova, I. Boulatnikov, K.M. Popov, Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem. J. 358(1), 69–77 (2001). https://doi.org/10.1042/bj3580069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. G. Sutendra, E.D. Michelakis, Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front. Oncol. 3, 38 (2013). https://doi.org/10.3389/fonc.2013.00038

    Article  PubMed  PubMed Central  Google Scholar 

  42. Y. Zhong, X. Li, Y. Ji, X. Li, Y. Li, D. Yu, Y. Yuan, J. Liu, H. Li, M. Zhang, Z. Ji, D. Fan, J. Wen, M.A. Goscinski, L. Yuan, B. Hao, J.M. Nesland, Z. Suo, Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget 8(8), 13344–13356 (2017). https://doi.org/10.18632/oncotarget.14527

    Article  PubMed  PubMed Central  Google Scholar 

  43. J. Chen, I. Guccini, D. Di Mitri, D. Brina, A. Revandkar, M. Sarti, E. Pasquini, A. Alajati, S. Pinton, M. Losa, G. Civenni, C.V. Catapano, J. Sgrignani, A. Cavalli, R. D’Antuono, J.M. Asara, A. Morandi, P. Chiarugi, S. Crotti, M. Agostini, M. Montopoli, I. Masgras, A. Rasola, R. Garcia-Escudero, N. Delaleu, A. Rinaldi, F. Bertoni, J. Bono, A. Carracedo, A. Alimonti, Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat. Genet. 50(2), 219–228 (2018). https://doi.org/10.1038/s41588-017-0026-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. G. Sutendra, A. Kinnaird, P. Dromparis, R. Paulin, T.H. Stenson, A. Haromy, K. Hashimoto, N. Zhang, E. Flaim, E.D. Michelakis, A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158(1), 84–97 (2014). https://doi.org/10.1016/j.cell.2014.04.046

    Article  CAS  PubMed  Google Scholar 

  45. M.C. Hsu, W.C. Hung, Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol. Cancer 17(1), 35 (2018). https://doi.org/10.1186/s12943-018-0791-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. F.A. Siddiqui, G. Prakasam, S. Chattopadhyay, A.U. Rehman, R.A. Padder, M.A. Ansari, R. Irshad, K. Mangalhara, R.N.K. Bamezai, M. Husain, S.M. Ali, M.A. Iqbal, Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1alpha inhibition. Sci. Rep. 8(1), 8323 (2018). https://doi.org/10.1038/s41598-018-25524-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. N. Wong, J. Yan, D. Ojo, J. De Melo, J.C. Cutz, D. Tang, Changes in PKM2 associate with prostate cancer progression. Cancer Invest. 32(7), 330–338 (2014). https://doi.org/10.3109/07357907.2014.919306

    Article  CAS  PubMed  Google Scholar 

  48. G. Dong, Q. Mao, W. Xia, Y. Xu, J. Wang, L. Xu, F. Jiang, PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol. Lett. 11(3), 1980–1986 (2016). https://doi.org/10.3892/ol.2016.4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. H.J. Wang, M. Pochampalli, L.Y. Wang, J.X. Zou, P.S. Li, S.C. Hsu, B.J. Wang, S.H. Huang, P. Yang, J.C. Yang, C.Y. Chu, C.L. Hsieh, S.Y. Sung, C.F. Li, C.G. Tepper, D.K. Ann, A.C. Gao, C.P. Evans, Y. Izumiya, C.P. Chuu, W.C. Wang, H.W. Chen, H.J. Kung, KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene 38, 17 (2019). https://doi.org/10.1038/s41388-018-0414-x

    Article  CAS  PubMed  Google Scholar 

  50. Y. Yasumizu, H. Hongo, T. Kosaka, S. Mikami, K. Nishimoto, E. Kikuchi, M. Oya, PKM2 under hypoxic environment causes resistance to mTOR inhibitor in human castration resistant prostate cancer. Oncotarget 9(45), 27698–27707 (2018). https://doi.org/10.18632/oncotarget.25498

    Article  PubMed  PubMed Central  Google Scholar 

  51. D. Hasan, E. Gamen, N. Abu Tarboush, Y. Ismail, O. Pak, B. Azab, PKM2 and HIF-1alpha regulation in prostate cancer cell lines. PLoS One 13(9), e0203745 (2018). https://doi.org/10.1371/journal.pone.0203745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. E. Giannoni, M.L. Taddei, A. Morandi, G. Comito, M. Calvani, F. Bianchini, B. Richichi, G. Raugei, N. Wong, D. Tang, P. Chiarugi, Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread. Oncotarget 6(27), 24061–24074 (2015). https://doi.org/10.18632/oncotarget.4448

    Article  PubMed  PubMed Central  Google Scholar 

  53. Z.Y. Xian, J.M. Liu, Q.K. Chen, H.Z. Chen, C.J. Ye, J. Xue, H.Q. Yang, J.L. Li, X.F. Liu, S.J. Kuang, Inhibition of LDHA suppresses tumor progression in prostate cancer. Tumour Biol. 36(10), 8093–8100 (2015). https://doi.org/10.1007/s13277-015-3540-x

    Article  CAS  PubMed  Google Scholar 

  54. M.I. Koukourakis, A. Giatromanolaki, M. Panteliadou, S.E. Pouliliou, P.S. Chondrou, S. Mavropoulou, E. Sivridis, Lactate dehydrogenase 5 isoenzyme overexpression defines resistance of prostate cancer to radiotherapy. Br. J. Cancer 110(9), 2217–2223 (2014). https://doi.org/10.1038/bjc.2014.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S.Y. Choi, H. Xue, R. Wu, L. Fazli, D. Lin, C.C. Collins, M.E. Gleave, P.W. Gout, Y. Wang, The MCT4 gene: a novel, potential target for therapy of advanced prostate cancer. Clin. Cancer Res. 22(11), 2721–2733 (2016). https://doi.org/10.1158/1078-0432.CCR-15-1624

    Article  CAS  PubMed  Google Scholar 

  56. J.R. Doherty, J.L. Cleveland, Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123(9), 3685–3692 (2013). https://doi.org/10.1172/JCI69741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. J. Liu, G. Chen, Z. Liu, S. Liu, Z. Cai, P. You, Y. Ke, L. Lai, Y. Huang, H. Gao, L. Zhao, H. Pelicano, P. Huang, W.L. McKeehan, C.L. Wu, C. Wang, W. Zhong, F. Wang, Aberrant FGFR tyrosine kinase signaling enhances the warburg effect by reprogramming LDH isoform expression and activity in prostate cancer. Cancer Res. 78(16), 4459–4470 (2018). https://doi.org/10.1158/0008-5472.CAN-17-3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. R.S. Jones, M.E. Morris, Monocarboxylate transporters: therapeutic targets and prognostic factors in disease. Clin. Pharmacol. Ther. 100(5), 454–463 (2016). https://doi.org/10.1002/cpt.418

    Article  CAS  PubMed  Google Scholar 

  59. M.C. Wilson, V.N. Jackson, C. Heddle, N.T. Price, H. Pilegaard, C. Juel, A. Bonen, I. Montgomery, O.F. Hutter, A.P. Halestrap, Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J. Biol. Chem. 273(26), 15920–15926 (1998). https://doi.org/10.1074/jbc.273.26.15920

    Article  CAS  PubMed  Google Scholar 

  60. S.Y.C. Choi, S.L. Ettinger, D. Lin, H. Xue, X. Ci, N. Nabavi, R.H. Bell, F. Mo, P.W. Gout, N.E. Fleshner, M.E. Gleave, C.C. Collins, Y. Wang, Targeting MCT4 to reduce lactic acid secretion and glycolysis for treatment of neuroendocrine prostate cancer. Cancer Med. 7, 3385 (2018). https://doi.org/10.1002/cam4.1587

    Article  CAS  PubMed Central  Google Scholar 

  61. N. Pertega-Gomes, J.R. Vizcaino, V. Miranda-Goncalves, C. Pinheiro, J. Silva, H. Pereira, P. Monteiro, R.M. Henrique, R.M. Reis, C. Lopes, F. Baltazar, Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer 11, 312 (2011). https://doi.org/10.1186/1471-2407-11-312

    Article  PubMed  PubMed Central  Google Scholar 

  62. P. Sanita, M. Capulli, A. Teti, G.P. Galatioto, C. Vicentini, P. Chiarugi, M. Bologna, A. Angelucci, Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer 14, 154 (2014). https://doi.org/10.1186/1471-2407-14-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. N. Pertega-Gomes, J.R. Vizcaino, S. Felisbino, A.Y. Warren, G. Shaw, J. Kay, H. Whitaker, A.G. Lynch, L. Fryer, D.E. Neal, C.E. Massie, Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer. Oncotarget 6(25), 21675–21684 (2015). https://doi.org/10.18632/oncotarget.4328

    Article  PubMed  PubMed Central  Google Scholar 

  64. I. Valenca, N. Pertega-Gomes, J.R. Vizcaino, R.M. Henrique, C. Lopes, F. Baltazar, D. Ribeiro, Localization of MCT2 at peroxisomes is associated with malignant transformation in prostate cancer. J. Cell. Mol. Med. 19(4), 723–733 (2015). https://doi.org/10.1111/jcmm.12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. H.S. Kim, E.M. Masko, S.L. Poulton, K.M. Kennedy, S.V. Pizzo, M.W. Dewhirst, S.J. Freedland, Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer. BJU Int. 110(7), 1062–1069 (2012). https://doi.org/10.1111/j.1464-410X.2012.10971.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. P. Jiang, W. Du, M. Wu, Regulation of the pentose phosphate pathway in cancer. Protein Cell 5(8), 592–602 (2014). https://doi.org/10.1007/s13238-014-0082-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. E.S. Cho, Y.H. Cha, H.S. Kim, N.H. Kim, J.I. Yook, The pentose phosphate pathway as a potential target for cancer therapy. Biomol. Ther. 26(1), 29–38 (2018). https://doi.org/10.4062/biomolther.2017.179

    Article  CAS  Google Scholar 

  68. I.A. da Costa, J. Hennenlotter, V. Stuhler, U. Kuhs, M. Scharpf, T. Todenhofer, A. Stenzl, J. Bedke, Transketolase like 1 (TKTL1) expression alterations in prostate cancer tumorigenesis. Urol. Oncol. 36(10), 472.e421–472.e427 (2018). https://doi.org/10.1016/j.urolonc.2018.06.010

    Article  CAS  Google Scholar 

  69. E. Tsouko, A.S. Khan, M.A. White, J.J. Han, Y. Shi, F.A. Merchant, M.A. Sharpe, L. Xin, D.E. Frigo, Regulation of the pentose phosphate pathway by an AR-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis 3, e103 (2014). https://doi.org/10.1038/oncsis.2014.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. M. Ookhtens, R. Kannan, I. Lyon, N. Baker, Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am. J. Physiol. Regul. Integr. Compar. Physiol. 247(1), R146–R153 (1984). https://doi.org/10.1152/ajpregu.1984.247.1.R146

    Article  CAS  Google Scholar 

  71. W. Han, S. Gao, D. Barrett, M. Ahmed, D. Han, J.A. Macoska, H.H. He, C. Cai, Reactivation of AR-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer. Oncogene 37(6), 710–721 (2018). https://doi.org/10.1038/onc.2017.385

    Article  CAS  PubMed  Google Scholar 

  72. J.V. Swinnen, H. Heemers, T.V. de Sande, E.D. Schrijver, K. Brusselmans, W. Heyns, G. Verhoeven, Androgens, lipogenesis and prostate cancer. J. Steroid Biochem. Mol. Biol. 92(4), 273–279 (2004). https://doi.org/10.1016/j.jsbmb.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  73. W.-C. Huang, X. Li, J. Liu, J. Lin, L.W.K. Chung, Activation of AR, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol. Cancer Res. 10(1), 133–142 (2012). https://doi.org/10.1158/1541-7786.MCR-11-0206

    Article  CAS  PubMed  Google Scholar 

  74. M. Chen, J. Zhang, K. Sampieri, J.G. Clohessy, L. Mendez, E. Gonzalez-Billalabeitia, X.S. Liu, Y.R. Lee, J. Fung, J.M. Katon, A.V. Menon, K.A. Webster, C. Ng, M.D. Palumbieri, M.S. Diolombi, S.B. Breitkopf, J. Teruya-Feldstein, S. Signoretti, R.T. Bronson, J.M. Asara, M. Castillo-Martin, C. Cordon-Cardo, P.P. Pandolfi, An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet. 50(2), 206–218 (2018). https://doi.org/10.1038/s41588-017-0027-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. C. Yokoyama, X. Wang, M.R. Briggs, A. Admon, J. Wu, X. Hua, J.L. Goldstein, M.S. Brown, SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75(1), 187–197 (1993). https://doi.org/10.1016/S0092-8674(05)80095-9

    Article  CAS  PubMed  Google Scholar 

  76. W. Shao, P.J. Espenshade, Expanding roles for SREBP in metabolism. Cell Metab. 16(4), 414–419 (2012). https://doi.org/10.1016/j.cmet.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. S.L. Ettinger, R. Sobel, T.G. Whitmore, M. Akbari, D.R. Bradley, M.E. Gleave, C.C. Nelson, Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 64(6), 2212–2221 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. H. Heemers, G. Verrijdt, S. Organe, F. Claessens, W. Heyns, G. Verhoeven, J.V. Swinnen, Identification of an androgen response element in intron 8 of the sterol regulatory element-binding protein cleavage-activating protein gene allowing direct regulation by the AR. J. Biol. Chem. 279(29), 30880–30887 (2004). https://doi.org/10.1074/jbc.M401615200

    Article  CAS  PubMed  Google Scholar 

  79. J.V. Swinnen, W. Ulrix, W. Heyns, G. Verhoeven, Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc. Natl. Acad. Sci. 94(24), 12975–12980 (1997). https://doi.org/10.1073/pnas.94.24.12975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. W.-C. Huang, H.E. Zhau, L.W.K. Chung, AR survival signaling is blocked by anti-β2-microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells. J. Biol. Chem. 285(11), 7947–7956 (2010). https://doi.org/10.1074/jbc.M109.092759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. E. Rysman, K. Brusselmans, K. Scheys, L. Timmermans, R. Derua, S. Munck, P.P. Van Veldhoven, D. Waltregny, V.W. Daniëls, J. Machiels, F. Vanderhoydonc, K. Smans, E. Waelkens, G. Verhoeven, J.V. Swinnen, De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70(20), 8117 (2010). https://doi.org/10.1158/0008-5472.CAN-09-3871

    Article  CAS  PubMed  Google Scholar 

  82. K. Simons, D. Toomre, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31 (2000). https://doi.org/10.1038/35036052

    Article  CAS  PubMed  Google Scholar 

  83. L. Li, C.H. Ren, S.A. Tahir, C. Ren, T.C. Thompson, Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol. Cell. Biol. 23(24), 9389–9404 (2003). https://doi.org/10.1128/MCB.23.24.9389-9404.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. R.M. Young, D. Holowka, B. Baird, A lipid raft environment enhances lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J. Biol. Chem. 278(23), 20746–20752 (2003). https://doi.org/10.1074/jbc.M211402200

    Article  CAS  PubMed  Google Scholar 

  85. K.R. Rice, M.O. Koch, L. Cheng, T.A. Masterson, Dyslipidemia, statins and prostate cancer. Expert Rev. Anticancer Ther. 12(7), 981–990 (2012). https://doi.org/10.1586/era.12.75

    Article  CAS  PubMed  Google Scholar 

  86. B. Cinar, N.K. Mukhopadhyay, G. Meng, M.R. Freeman, Phosphoinositide 3-kinase-independent non-genomic signals transit from the AR to Akt1 in membrane raft microdomains. J. Biol. Chem. 282(40), 29584–29593 (2007). https://doi.org/10.1074/jbc.M703310200

    Article  CAS  PubMed  Google Scholar 

  87. R.V. Farese, T.C. Walther, Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5), 855–860 (2009). https://doi.org/10.1016/j.cell.2009.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. T. Petan, E. Jarc, M. Jusović, Lipid droplets in cancer: guardians of fat in a stressful world. Molecules 23(8), E1941 (2018). https://doi.org/10.3390/molecules23081941

    Article  CAS  PubMed  Google Scholar 

  89. K. Bensaad, E. Favaro, A. Lewis Caroline, B. Peck, S. Lord, M. Collins Jennifer, E. Pinnick Katherine, S. Wigfield, M. Buffa Francesca, J.-L. Li, Q. Zhang, J.O. Wakelam Michael, F. Karpe, A. Schulze, L. Harris Adrian, Fatty Acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 9(1), 349–365 (2014). https://doi.org/10.1016/j.celrep.2014.08.056

    Article  CAS  PubMed  Google Scholar 

  90. A.G. Cabodevilla, L. Sánchez-Caballero, E. Nintou, V.G. Boiadjieva, F. Picatoste, A. Gubern, E. Claro, Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids. J. Biol. Chem. 288(39), 27777–27788 (2013). https://doi.org/10.1074/jbc.M113.466656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. S. Koizume, Y. Miyagi, Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int. J. Mol. Sci. 17(9), 1430 (2016). https://doi.org/10.3390/ijms17091430

    Article  CAS  PubMed Central  Google Scholar 

  92. J.V. Swinnen, G. Verhoeven, Androgens and the control of lipid metabolism in human prostate cancer cells. J. Steroid Biochem. Mol. Biol. 65(1), 191–198 (1998). https://doi.org/10.1016/S0960-0760(97)00187-8

    Article  CAS  PubMed  Google Scholar 

  93. S. Yue, J. Li, S.Y. Lee, H.J. Lee, T. Shao, B. Song, L. Cheng, T.A. Masterson, X. Liu, T.L. Ratliff, J.X. Cheng, Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19(3), 393–406 (2014). https://doi.org/10.1016/j.cmet.2014.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. J.V. Swinnen, T. Roskams, S. Joniau, H. Van Poppel, R. Oyen, L. Baert, W. Heyns, G. Verhoeven, Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int. J. Cancer 98(1), 19–22 (2002). https://doi.org/10.1002/ijc.10127

    Article  CAS  PubMed  Google Scholar 

  95. T. Van de Sande, T. Roskams, E. Lerut, S. Joniau, H. Van Poppel, G. Verhoeven, J.V. Swinnen, High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB. J. Pathol. 206(2), 214–219 (2005). https://doi.org/10.1002/path.1760

    Article  CAS  PubMed  Google Scholar 

  96. T. Migita, S. Ruiz, A. Fornari, M. Fiorentino, C. Priolo, G. Zadra, F. Inazuka, C. Grisanzio, E. Palescandolo, E. Shin, C. Fiore, W. Xie, A.L. Kung, P.G. Febbo, A. Subramanian, L. Mucci, J. Ma, S. Signoretti, M. Stampfer, W.C. Hahn, S. Finn, M. Loda, Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst. 101(7), 519–532 (2009). https://doi.org/10.1093/jnci/djp030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. S. Hamada, A. Horiguchi, K. Kuroda, K. Ito, T. Asano, K. Miyai, K. Iwaya, Increased fatty acid synthase expression in prostate biopsy cores predicts higher Gleason score in radical prostatectomy specimen. BMC Clin. Pathol. 14(1), 3 (2014). https://doi.org/10.1186/1472-6890-14-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. G. Zadra, C.F. Ribeiro, P. Chetta, Y. Ho, S. Cacciatore, X. Gao, S. Syamala, C. Bango, C. Photopoulos, Y. Huang, S. Tyekucheva, D.C. Bastos, J. Tchaicha, B. Lawney, T. Uo, L. D’Anello, A. Csibi, R. Kalekar, B. Larimer, L. Ellis, L.M. Butler, C. Morrissey, K. McGovern, V.J. Palombella, J.L. Kutok, U. Mahmood, S. Bosari, J. Adams, S. Peluso, S.M. Dehm, S.R. Plymate, M. Loda, Inhibition of de novo lipogenesis targets AR signaling in castration-resistant prostate cancer. Proc. Natl. Acad. Sci. 116(2), 631–640 (2019). https://doi.org/10.1073/pnas.1808834116

    Article  CAS  PubMed  Google Scholar 

  99. E. Furuta, S.K. Pai, R. Zhan, S. Bandyopadhyay, M. Watabe, Y.-Y. Mo, S. Hirota, S. Hosobe, T. Tsukada, K. Miura, S. Kamada, K. Saito, M. Iiizumi, W. Liu, J. Ericsson, K. Watabe, Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 68(4), 1003 (2008). https://doi.org/10.1158/0008-5472.CAN-07-2489

    Article  CAS  PubMed  Google Scholar 

  100. X. Gang, Y. Yang, J. Zhong, K. Jiang, Y. Pan, R.J. Karnes, J. Zhang, W. Xu, G. Wang, H. Huang, P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 7(12), 15135–15149 (2016). https://doi.org/10.18632/oncotarget.7715

    Article  PubMed  PubMed Central  Google Scholar 

  101. S. Kim, X. Yang, Q. Li, M. Wu, L. Costyn, Z. Beharry, M.G. Bartlett, H. Cai, Myristoylation of Src kinase mediates Src-induced and high-fat diet–accelerated prostate tumor progression in mice. J. Biol. Chem. 292(45), 18422–18433 (2017). https://doi.org/10.1074/jbc.M117.798827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. H. Cai, D.A. Smith, S. Memarzadeh, C.A. Lowell, J.A. Cooper, O.N. Witte, Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc. Natl. Acad. Sci. 108(16), 6579–6584 (2011). https://doi.org/10.1073/pnas.1103904108

    Article  PubMed  PubMed Central  Google Scholar 

  103. F.L. Zhang, P.J. Casey, Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65(1), 241–269 (1996). https://doi.org/10.1146/annurev.bi.65.070196.001325

    Article  CAS  PubMed  Google Scholar 

  104. B.M. Wasko, A. Dudakovic, R.J. Hohl, Bisphosphonates induce autophagy by depleting geranylgeranyl diphosphate. J. Pharmacol. Exp. Ther. 337(2), 540 (2011). https://doi.org/10.1124/jpet.110.175521

    Article  CAS  PubMed  Google Scholar 

  105. J.E. Reilly, J.D. Neighbors, R.J. Hohl, Targeting protein geranylgeranylation slows tumor development in a murine model of prostate cancer metastasis. Cancer Biol. Ther. 18(11), 872–882 (2016). https://doi.org/10.1080/15384047.2016.1219817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. N.M. Zacharias, C. McCullough, S. Shanmugavelandy, J. Lee, Y. Lee, P. Dutta, J. McHenry, L. Nguyen, W. Norton, L.W. Jones, P.K. Bhattacharya, Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci. Rep. 7(1), 16159 (2017). https://doi.org/10.1038/s41598-017-16327-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. S.M. Fendt, E.L. Bell, M.A. Keibler, B.A. Olenchock, J.R. Mayers, T.M. Wasylenko, N.I. Vokes, L. Guarente, M.G. Vander Heiden, G. Stephanopoulos, Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nat. Commun. 4, 2236 (2013). https://doi.org/10.1038/ncomms3236

    Article  CAS  PubMed  Google Scholar 

  108. A.R. Mullen, W.W. Wheaton, E.S. Jin, P.H. Chen, L.B. Sullivan, T. Cheng, Y. Yang, W.M. Linehan, N.S. Chandel, R.J. DeBerardinis, Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381), 385–388 (2011). https://doi.org/10.1038/nature10642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. C.M. Metallo, P.A. Gameiro, E.L. Bell, K.R. Mattaini, J. Yang, K. Hiller, C.M. Jewell, Z.R. Johnson, D.J. Irvine, L. Guarente, J.K. Kelleher, M.G. Vander Heiden, O. Iliopoulos, G. Stephanopoulos, Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381), 380–384 (2011). https://doi.org/10.1038/nature10602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. N. Zaidi, J.V. Swinnen, K. Smans, ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72(15), 3709–3714 (2012). https://doi.org/10.1158/0008-5472.CAN-11-4112

    Article  CAS  PubMed  Google Scholar 

  111. S. Shah, W.J. Carriveau, J. Li, S.L. Campbell, P.K. Kopinski, H.W. Lim, N. Daurio, S. Trefely, K.J. Won, D.C. Wallace, C. Koumenis, A. Mancuso, K.E. Wellen, Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget 7(28), 43713–43730 (2016). https://doi.org/10.18632/oncotarget.9666

    Article  PubMed  PubMed Central  Google Scholar 

  112. A. Beckers, S. Organe, L. Timmermans, K. Scheys, A. Peeters, K. Brusselmans, G. Verhoeven, J.V. Swinnen, Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67(17), 8180–8187 (2007). https://doi.org/10.1158/0008-5472.CAN-07-0389

    Article  CAS  PubMed  Google Scholar 

  113. J.V. Swinnen, P.P. Van Veldhoven, L. Timmermans, E. De Schrijver, K. Brusselmans, F. Vanderhoydonc, T. Van de Sande, H. Heemers, W. Heyns, G. Verhoeven, Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 302(4), 898–903 (2003). https://doi.org/10.1016/S0006-291X(03)00265-1

    Article  CAS  PubMed  Google Scholar 

  114. B. Peck, Z.T. Schug, Q. Zhang, B. Dankworth, D.T. Jones, E. Smethurst, R. Patel, S. Mason, M. Jiang, R. Saunders, M. Howell, R. Mitter, B. Spencer-Dene, G. Stamp, L. McGarry, D. James, E. Shanks, E.O. Aboagye, S.E. Critchlow, H.Y. Leung, A.L. Harris, M.J.O. Wakelam, E. Gottlieb, A. Schulze, Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 4(1), 6 (2016). https://doi.org/10.1186/s40170-016-0146-8

    Article  PubMed  PubMed Central  Google Scholar 

  115. R.B. Montgomery, E.A. Mostaghel, R. Vessella, D.L. Hess, T.F. Kalhorn, C.S. Higano, L.D. True, P.S. Nelson, Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68(11), 4447–4454 (2008). https://doi.org/10.1158/0008-5472.CAN-08-0249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. D.J. Mener, Prostate specific antigen reduction following statin therapy: mechanism of action and review of the literature. IUBMB Life 62(8), 584–590 (2010). https://doi.org/10.1002/iub.355

    Article  CAS  PubMed  Google Scholar 

  117. A.D. Raval, D. Thakker, H. Negi, A. Vyas, M.W. Salkini, Association between statins and clinical outcomes among men with prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 19, 151 (2016). https://doi.org/10.1038/pcan.2015.58

    Article  CAS  PubMed  Google Scholar 

  118. C.R. Sirtori, The pharmacology of statins. Pharmacol. Res. 88, 3–11 (2014). https://doi.org/10.1016/j.phrs.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  119. Y. Chen, M. Hughes-Fulford, Human prostate cancer cells lack feedback regulation of low-density lipoprotein receptor and its regulator, SREBP2. Int. J. Cancer 91(1), 41–45 (2001). https://doi.org/10.1002/1097-0215(20010101)91:1<41::AID-IJC1009>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  120. Y. Zhang, K.L. Ma, X.Z. Ruan, B.C. Liu, Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. Int. J. Biol. Sci. 12(5), 569–579 (2016). https://doi.org/10.7150/ijbs.14027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. J.R. Krycer, A.J. Brown, Cross-talk between the AR and the liver X receptor. J. Biol. Chem. 286(23), 20637–20647 (2011). https://doi.org/10.1074/jbc.M111.227082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. N. Zelcer, C. Hong, R. Boyadjian, P. Tontonoz, LXR regulates cholesterol uptake through idol-dependent ubiquitination of the LDL Receptor. Science 325(5936), 100 (2009). https://doi.org/10.1126/science.1168974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. J.J. Repa, S.D. Turley, J.M.A. Lobaccaro, J. Medina, L. Li, K. Lustig, B. Shan, R.A. Heyman, J.M. Dietschy, D.J. Mangelsdorf, Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289(5484), 1524 (2000). https://doi.org/10.1126/science.289.5484.1524

    Article  CAS  PubMed  Google Scholar 

  124. D.J. Peet, S.D. Turley, W. Ma, B.A. Janowski, J.-M.A. Lobaccaro, R.E. Hammer, D.J. Mangelsdorf, Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93(5), 693–704 (1998). https://doi.org/10.1016/S0092-8674(00)81432-4

    Article  CAS  PubMed  Google Scholar 

  125. A.J.C. Pommier, G. Alves, E. Viennois, S. Bernard, Y. Communal, B. Sion, G. Marceau, C. Damon, K. Mouzat, F. Caira, S. Baron, J.M.A. Lobaccaro, Liver X receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 29, 2712 (2010). https://doi.org/10.1038/onc.2010.30

    Article  CAS  PubMed  Google Scholar 

  126. C.-Y. Lin, J.-Å. Gustafsson, Targeting liver X receptors in cancer therapeutics. Nat. Rev. Cancer 15, 216 (2015). https://doi.org/10.1038/nrc3912

    Article  CAS  PubMed  Google Scholar 

  127. M.A. Alfaqih, E.R. Nelson, W. Liu, R. Safi, J.S. Jasper, E. Macias, J. Geradts, J.W. Thompson, L.G. Dubois, M.R. Freeman, C.Y. Chang, J.T. Chi, D.P. McDonnell, S.J. Freedland, CYP27A1 loss dysregulates cholesterol homeostasis in prostate cancer. Cancer Res. 77(7), 1662–1673 (2017). https://doi.org/10.1158/0008-5472.CAN-16-2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Y. Liu, Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 9(3), 230–234 (2006)

    Article  CAS  PubMed  Google Scholar 

  129. T.W. Flaig, M. Salzmann-Sullivan, L.J. Su, Z. Zhang, M. Joshi, M.A. Gijon, J. Kim, J.J. Arcaroli, A. Van Bokhoven, M.S. Lucia, F.G. La Rosa, I.R. Schlaepfer, Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget 8(34), 56051–56065 (2017). https://doi.org/10.18632/oncotarget.17359

    Article  PubMed  PubMed Central  Google Scholar 

  130. I.R. Schlaepfer, L. Rider, L.U. Rodrigues, M.A. Gijon, C.T. Pac, L. Romero, A. Cimic, S.J. Sirintrapun, L.M. Glode, R.H. Eckel, S.D. Cramer, Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther. 13(10), 2361–2371 (2014). https://doi.org/10.1158/1535-7163.MCT-14-0183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. J.B. Tennakoon, Y. Shi, J.J. Han, E. Tsouko, M.A. White, A.R. Burns, A. Zhang, X. Xia, O.R. Ilkayeva, L. Xin, M.M. Ittmann, F.G. Rick, A.V. Schally, D.E. Frigo, Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 33, 5251–5261 (2014). https://doi.org/10.1038/onc.2013.463

    Article  CAS  PubMed  Google Scholar 

  132. G. Yu, C.J. Cheng, S.C. Lin, Y.C. Lee, D.E. Frigo, L.Y. Yu-Lee, G.E. Gallick, M.A. Titus, L.K. Nutt, S.H. Lin, Organelle-derived acetyl-CoA promotes prostate cancer cell survival, migration, and metastasis via activation of calmodulin kinase II. Cancer Res. 78(10), 2490–2502 (2018). https://doi.org/10.1158/0008-5472.CAN-17-2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. R.J.A. Wanders, Metabolic functions of peroxisomes in health and disease. Biochimie 98, 36–44 (2014). https://doi.org/10.1016/j.biochi.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  134. J. Luo, S. Zha, W.R. Gage, T.A. Dunn, J.L. Hicks, C.J. Bennett, C.M. Ewing, E.A. Platz, S. Ferdinandusse, R.J. Wanders, J.M. Trent, W.B. Isaacs, A.M. De Marzo, α-Methylacyl-CoA racemase a new molecular marker for prostate cancer. Cancer Res. 62(8), 2220–2226 (2002)

    CAS  PubMed  Google Scholar 

  135. M.D. Lloyd, M. Yevglevskis, G.L. Lee, P.J. Wood, M.D. Threadgill, T.J. Woodman, α-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S. Prog. Lipid Res. 52(2), 220–230 (2013). https://doi.org/10.1016/j.plipres.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  136. S. Zha, S. Ferdinandusse, J.L. Hicks, S. Denis, T.A. Dunn, R.J. Wanders, J. Luo, A.M. De Marzo, W.B. Isaacs, Peroxisomal branched chain fatty acid β-oxidation pathway is upregulated in prostate cancer. Prostate 63(4), 316–323 (2005). https://doi.org/10.1002/pros.20177

    Article  CAS  PubMed  Google Scholar 

  137. D.R. Wise, C.B. Thompson, Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35(8), 427–433 (2010). https://doi.org/10.1016/j.tibs.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. D. Daye, K.E. Wellen, Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23(4), 362–369 (2012). https://doi.org/10.1016/j.semcdb.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  139. D.R. Wise, R.J. DeBerardinis, A. Mancuso, N. Sayed, X.Y. Zhang, H.K. Pfeiffer, I. Nissim, E. Daikhin, M. Yudkoff, S.B. McMahon, C.B. Thompson, Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. 105(48), 18782–18787 (2008). https://doi.org/10.1073/pnas.0810199105

    Article  PubMed  PubMed Central  Google Scholar 

  140. B.J. Altman, Z.E. Stine, C.V. Dang, From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16(10), 619–634 (2016). https://doi.org/10.1038/nrc.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. M.A. White, C. Lin, K. Rajapakshe, J. Dong, Y. Shi, E. Tsouko, R. Mukhopadhyay, D. Jasso, W. Dawood, C. Coarfa, D.E. Frigo, Glutamine transporters are targets of multiple oncogenic signaling pathways in prostate cancer. Mol. Cancer Res. 15(8), 1017–1028 (2017). https://doi.org/10.1158/1541-7786.MCR-16-0480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Q. Wang, J. Tiffen, C.G. Bailey, M.L. Lehman, W. Ritchie, L. Fazli, C. Metierre, Y.J. Feng, E. Li, M. Gleave, G. Buchanan, C.C. Nelson, J.E. Rasko, J. Holst, Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. J. Natl. Cancer Inst. 105(19), 1463–1473 (2013). https://doi.org/10.1093/jnci/djt241

    Article  CAS  PubMed  Google Scholar 

  143. P. Gao, I. Tchernyshyov, T.C. Chang, Y.S. Lee, K. Kita, T. Ochi, K.I. Zeller, A.M. De Marzo, J.E. Van Eyk, J.T. Mendell, C.V. Dang, c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239), 762–765 (2009). https://doi.org/10.1038/nature07823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. K. Ellwood-Yen, T.G. Graeber, J. Wongvipat, M.L. Iruela-Arispe, J. Zhang, R. Matusik, G.V. Thomas, C.L. Sawyers, Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3), 223–238 (2003). https://doi.org/10.1016/s1535-6108(03)00197-1

    Article  CAS  PubMed  Google Scholar 

  145. J.J. Harding, M.L. Telli, P.N. Munster, M.H. Le, C. Molineaux, M.K. Bennett, E. Mittra, H.A. Burris, A.S. Clark, M. Dunphy, F. Meric-Bernstam, M.R. Patel, A. DeMichele, J.R. Infante, Safety and tolerability of increasing doses of CB-839, a first-in-class, orally administered small molecule inhibitor of glutaminase, in solid tumors. J. Clin. Oncol. 33(15 Suppl), 2512–2512 (2015). https://doi.org/10.1200/jco.2015.33.15_suppl.2512

    Article  Google Scholar 

  146. J.M. Rhoads, R.A. Argenzio, W. Chen, L.M. Graves, L.L. Licato, A.T. Blikslager, J. Smith, J. Gatzy, D.A. Brenner, Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, RAF-independent mechanism. Gastroenterology 118(1), 90–100 (2000). https://doi.org/10.1016/S0016-5085(00)70417-3

    Article  CAS  PubMed  Google Scholar 

  147. P. Dalle Pezze, S. Ruf, A.G. Sonntag, M. Langelaar-Makkinje, P. Hall, A.M. Heberle, P. Razquin Navas, K. van Eunen, R.C. Tölle, J.J. Schwarz, H. Wiese, B. Warscheid, J. Deitersen, B. Stork, E. Fäßler, S. Schäuble, U. Hahn, P. Horvatovich, D.P. Shanley, K. Thedieck, A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nat. Commun. 7, 13254 (2016). https://doi.org/10.1038/ncomms13254

    Article  CAS  PubMed  Google Scholar 

  148. S.A. Hawley, J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd, T.P. Mäkelä, D.R. Alessi, D.G. Hardie, Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2(4), 28 (2003). https://doi.org/10.1186/1475-4924-2-28

    Article  PubMed  PubMed Central  Google Scholar 

  149. A. Woods, S.R. Johnstone, K. Dickerson, F.C. Leiper, L.G. Fryer, D. Neumann, U. Schlattner, T. Wallimann, M. Carlson, D. Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13(22), 2004–2008 (2003). https://doi.org/10.1016/j.cub.2003.10.031

    Article  CAS  PubMed  Google Scholar 

  150. R.J. Shaw, M. Kosmatka, N. Bardeesy, R.L. Hurley, L.A. Witters, R.A. DePinho, L.C. Cantley, The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. 101(10), 3329–3335 (2004). https://doi.org/10.1073/pnas.0308061100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. D.E. Frigo, M.K. Howe, B.M. Wittmann, A.M. Brunner, I. Cushman, Q. Wang, M. Brown, A.R. Means, D.P. McDonnell, CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res. 71(2), 528–537 (2011). https://doi.org/10.1158/0008-5472.CAN-10-2581

    Article  CAS  PubMed  Google Scholar 

  152. L.G. Karacosta, B.A. Foster, G. Azabdaftari, D.M. Feliciano, A.M. Edelman, A Regulatory feedback loop between Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the AR in prostate cancer progression. J. Biol. Chem. 287(29), 24832–24843 (2012). https://doi.org/10.1074/jbc.M112.370783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. C.E. Massie, A. Lynch, A. Ramos-Montoya, J. Boren, R. Stark, L. Fazli, A. Warren, H. Scott, B. Madhu, N. Sharma, H. Bon, V. Zecchini, D.M. Smith, G.M. Denicola, N. Mathews, M. Osborne, J. Hadfield, S. Macarthur, B. Adryan, S.K. Lyons, K.M. Brindle, J. Griffiths, M.E. Gleave, P.S. Rennie, D.E. Neal, I.G. Mills, The AR fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30(13), 2719–2733 (2011). https://doi.org/10.1038/emboj.2011.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. M.L. Schulte, A. Fu, P. Zhao, J. Li, L. Geng, S.T. Smith, J. Kondo, R.J. Coffey, M.O. Johnson, J.C. Rathmell, J.T. Sharick, M.C. Skala, J.A. Smith, J. Berlin, M.K. Washington, M.L. Nickels, H.C. Manning, Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24(2), 194–202 (2018). https://doi.org/10.1038/nm.4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Y. Liu, T. Zhao, Z. Li, L. Wang, S. Yuan, L. Sun, The role of ASCT2 in cancer: a review. Eur. J. Pharmacol. 837, 81–87 (2018). https://doi.org/10.1016/j.ejphar.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  156. L. Feun, M. You, C.J. Wu, M.T. Kuo, M. Wangpaichitr, S. Spector, N. Savaraj, Arginine deprivation as a targeted therapy for cancer. Curr. Pharm. Des. 14(11), 1049–1057 (2008). https://doi.org/10.2174/138161208784246199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. R.H. Kim, J.M. Coates, T.L. Bowles, G.P. McNerney, J. Sutcliffe, J.U. Jung, R. Gandour-Edwards, F.Y.S. Chuang, R.J. Bold, H.-J. Kung, Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 69(2), 700 (2009). https://doi.org/10.1158/0008-5472.can-08-3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. R. Keshet, P. Szlosarek, A. Carracedo, A. Erez, Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer 18(10), 634–645 (2018). https://doi.org/10.1038/s41568-018-0054-z

    Article  CAS  PubMed  Google Scholar 

  159. J.S. Lee, L. Adler, H. Karathia, N. Carmel, S. Rabinovich, N. Auslander, R. Keshet, N. Stettner, A. Silberman, L. Agemy, D. Helbling, R. Eilam, Q. Sun, A. Brandis, S. Malitsky, M. Itkin, H. Weiss, S. Pinto, S. Kalaora, R. Levy, E. Barnea, A. Admon, D. Dimmock, N. Stern-Ginossar, A. Scherz, S.C.S. Nagamani, M. Unda, D.M. Wilson 3rd, R. Elhasid, A. Carracedo, Y. Samuels, S. Hannenhalli, E. Ruppin, A. Erez, Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures. Cell 174(6), 1559–1570.e1522 (2018). https://doi.org/10.1016/j.cell.2018.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. A. Husson, C. Brasse-Lagnel, A. Fairand, S. Renouf, A. Lavoinne, Argininosuccinate synthetase from the urea cycle to the citrulline–NO cycle. Eur. J. Biochem. 270(9), 1887–1899 (2003). https://doi.org/10.1046/j.1432-1033.2003.03559.x

    Article  CAS  PubMed  Google Scholar 

  161. C.M. Ensor, F.W. Holtsberg, J.S. Bomalaski, M.A. Clark, Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62(19), 5443–5450 (2002)

    CAS  PubMed  Google Scholar 

  162. E.C. Hsueh, S.M. Knebel, W.-H. Lo, Y.-C. Leung, P.N.-M. Cheng, C.-T. Hsueh, Deprivation of arginine by recombinant human arginase in prostate cancer cells. J. Hematol. Oncol. 5, 17 (2012). https://doi.org/10.1186/1756-8722-5-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. S.L. Nowotarski, P.M. Woster, R.A. Casero, Polyamines and cancer: implications for chemoprevention and chemotherapy. Expert Rev. Mol. Med. 15, e3 (2013). https://doi.org/10.1017/erm.2013.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. G.E. Bai, S. Kasper, R.J. Matusik, P.S. Rennie, J.A. Moshier, A. Krongrad, Androgen regulation of the human ornithine decarboxylase promoter in prostate cancer cells. J. Androl. 19(2), 127–135 (1998). https://doi.org/10.1002/j.1939-4640.1998.tb01981.x

    Article  CAS  PubMed  Google Scholar 

  165. A. Shukla-Dave, M. Castillo-Martin, M. Chen, J. Lobo, N. Gladoun, A. Collazo-Lorduy, F.M. Khan, V. Ponomarev, Z. Yi, W. Zhang, P.P. Pandolfi, H. Hricak, C. Cordon-Cardo, Ornithine decarboxylase is sufficient for prostate tumorigenesis via AR signaling. Am. J. Pathol. 186, 3131 (2016). https://doi.org/10.1016/j.ajpath.2016.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. B.H. Devens, R.S. Weeks, M.R. Burns, C.L. Carlson, M.K. Brawer, Polyamine depletion therapy in prostate cancer. Prostate Cancer Prostatic Dis. 3, 275 (2000). https://doi.org/10.1038/sj.pcan.4500420

    Article  CAS  PubMed  Google Scholar 

  167. G.F. Giskeødegård, H. Bertilsson, K.M. Selnæs, A.J. Wright, T.F. Bathen, T. Viset, J. Halgunset, A. Angelsen, I.S. Gribbestad, M.-B. Tessem, Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8(4), e62375 (2013). https://doi.org/10.1371/journal.pone.0062375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. M.G. Swanson, A.S. Zektzer, Z.L. Tabatabai, J. Simko, S. Jarso, K.R. Keshari, L. Schmitt, P.R. Carroll, K. Shinohara, D.B. Vigneron, J. Kurhanewicz, Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn. Reson. Med. 55(6), 1257–1264 (2006). https://doi.org/10.1002/mrm.20909

    Article  CAS  PubMed  Google Scholar 

  169. L.L. Cheng, C.-l. Wu, M.R. Smith, R.G. Gonzalez, Non‐destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4 T. FEBS Lett. 494(1-2), 112–116 (2001). https://doi.org/10.1016/S0014-5793(01)02329-8

    Article  CAS  PubMed  Google Scholar 

  170. M.J. Corbin, J.M. Ruiz-Echevarría, One-carbon metabolism in prostate cancer: the role of androgen signaling. Int. J. Mol. Sci. 17(8), E1208 (2016). https://doi.org/10.3390/ijms17081208

    Article  CAS  PubMed  Google Scholar 

  171. O. Shuvalov, A. Petukhov, A. Daks, O. Fedorova, E. Vasileva, N.A. Barlev, One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 8(14), 23955–23977 (2017). https://doi.org/10.18632/oncotarget.15053

    Article  PubMed  PubMed Central  Google Scholar 

  172. A. Sreekumar, L.M. Poisson, T.M. Rajendiran, A.P. Khan, Q. Cao, J. Yu, B. Laxman, R. Mehra, R.J. Lonigro, Y. Li, M.K. Nyati, A. Ahsan, S. Kalyana-Sundaram, B. Han, X. Cao, J. Byun, G.S. Omenn, D. Ghosh, S. Pennathur, D.C. Alexander, A. Berger, J.R. Shuster, J.T. Wei, S. Varambally, C. Beecher, A.M. Chinnaiyan, Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910 (2009). https://doi.org/10.1038/nature07762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. A.A. Shafi, V. Putluri, J.M. Arnold, E. Tsouko, S. Maity, J.M. Roberts, C. Coarfa, D.E. Frigo, N. Putluri, A. Sreekumar, N.L. Weigel, Differential regulation of metabolic pathways by AR and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 6(31), 31997–32012 (2015). https://doi.org/10.18632/oncotarget.5585

    Article  PubMed  PubMed Central  Google Scholar 

  174. S. Ottaviani, G.N. Brooke, C. O’Hanlon-Brown, J. Waxman, S. Ali, L. Buluwela, Characterisation of the androgen regulation of glycine N-methyltransferase in prostate cancer cells. J. Mol. Endocrinol. 51(3), 301–312 (2013). https://doi.org/10.1530/jme-13-0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. W.G. Nelson, A.M. De Marzo, S. Yegnasubramanian, Epigenetic alterations in human prostate cancers. Endocrinology 150(9), 3991–4002 (2009). https://doi.org/10.1210/en.2009-0573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. S. Yegnasubramanian, J. Kowalski, M.L. Gonzalgo, M. Zahurak, S. Piantadosi, P.C. Walsh, G.S. Bova, A.M. De Marzo, W.B. Isaacs, W.G. Nelson, Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64(6), 1975 (2004). https://doi.org/10.1158/0008-5472.can-03-3972

    Article  CAS  PubMed  Google Scholar 

  177. C. Jerónimo, R. Henrique, M.O. Hoque, E. Mambo, F.R. Ribeiro, G. Varzim, J. Oliveira, M.R. Teixeira, C. Lopes, D. Sidransky, A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res. 10(24), 8472 (2004). https://doi.org/10.1158/1078-0432.ccr-04-0894

    Article  PubMed  Google Scholar 

  178. R. Maruyama, S. Toyooka, K.O. Toyooka, A.K. Virmani, S. Zöchbauer-Müller, A.J. Farinas, J.D. Minna, J. McConnell, E.P. Frenkel, A.F. Gazdar, Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin. Cancer Res. 8(2), 514 (2002)

    CAS  PubMed  Google Scholar 

  179. A.R. Florl, C. Steinhoff, M. Müller, H.H. Seifert, C. Hader, R. Engers, R. Ackermann, W.A. Schulz, Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br. J. Cancer 91(5), 985–994 (2004). https://doi.org/10.1038/sj.bjc.6602030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. A. Padar, U.G. Sathyanarayana, M. Suzuki, R. Maruyama, J.T. Hsieh, E.P. Frenkel, J.D. Minna, A.F. Gazdar, Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin. Cancer Res. 9(13), 4730–4734 (2003)

    CAS  PubMed  Google Scholar 

  181. M. Yamanaka, M. Watanabe, Y. Yamada, A. Takagi, T. Murata, H. Takahashi, H. Suzuki, H. Ito, H. Tsukino, T. Katoh, Y. Sugimura, T. Shiraishi, Altered methylation of multiple genes in carcinogenesis of the prostate. Int. J. Cancer 106(3), 382–387 (2003). https://doi.org/10.1002/ijc.11227

    Article  CAS  PubMed  Google Scholar 

  182. J. Ellinger, P.J. Bastian, T. Jurgan, K. Biermann, P. Kahl, L.C. Heukamp, N. Wernert, S.C. Müller, A. von Ruecker, CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology 71(1), 161–167 (2008). https://doi.org/10.1016/j.urology.2007.09.056

    Article  PubMed  Google Scholar 

  183. D. Lodygin, A. Epanchintsev, A. Menssen, J. Diebold, H. Hermeking, Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65(10), 4218 (2005). https://doi.org/10.1158/0008-5472.can-04-4407

    Article  CAS  PubMed  Google Scholar 

  184. S.P. Antoinette, F. Ruth, W. Karen, L. Mark, The emerging roles of DNA methylation in the clinical management of prostate cancer. Endoc. Relat. Cancer 13(2), 357–377 (2006). https://doi.org/10.1677/erc.1.01184

    Article  CAS  Google Scholar 

  185. E. Lee, J. Wang, K. Yumoto, Y. Jung, F.C. Cackowski, A.M. Decker, Y. Li, R.T. Franceschi, K.J. Pienta, R.S. Taichman, DNMT1 Regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia 18(9), 553–566 (2016). https://doi.org/10.1016/j.neo.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. S.R. Morey Kinney, M.T. Moser, M. Pascual, J.M. Greally, B.A. Foster, A.R. Karpf, Opposing roles of Dnmt1 in early- and late-stage murine prostate cancer. Mol. Cell. Biol. 30(17), 4159 (2010). https://doi.org/10.1128/mcb.00235-10

    Article  PubMed Central  Google Scholar 

  187. M.T. McCabe, J.A. Low, S. Daignault, M.J. Imperiale, K.J. Wojno, M.L. Day, Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res. 66(1), 385 (2006). https://doi.org/10.1158/0008-5472.can-05-2020

    Article  CAS  PubMed  Google Scholar 

  188. R. Singal, K. Ramachandran, E. Gordian, C. Quintero, W. Zhao, I.M. Reis, Phase I/II study of azacitidine, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel-based therapy. Clin. Genitourin. Cancer 13(1), 22–31 (2015). https://doi.org/10.1016/j.clgc.2014.07.008

    Article  PubMed  Google Scholar 

  189. R.A. Casero Jr., L.J. Marton, Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 6, 373 (2007). https://doi.org/10.1038/nrd2243

    Article  CAS  PubMed  Google Scholar 

  190. E.W. Gerner, F.L. Meyskens Jr., Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer 4, 781 (2004). https://doi.org/10.1038/nrc1454

    Article  CAS  PubMed  Google Scholar 

  191. K. Soda, The mechanisms by which polyamines accelerate tumor spread. J. Exp. Clin. Cancer Res. 30(1), 95–95 (2011). https://doi.org/10.1186/1756-9966-30-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. B.G. Cipolla, R. Havouis, J.-P. Moulinoux, Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients. Biomed. Pharmacother. 64(5), 363–368 (2010). https://doi.org/10.1016/j.biopha.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  193. I.G. Fantus, H.J. Goldberg, C.I. Whiteside, D. Topic, The hexosamine biosynthesis pathway, in The Diabetic Kidney, ed. by P. Cortes, C. E. Mogensen, (Humana Press, Totowa, NJ, 2006), pp. 117–133. https://doi.org/10.1007/978-1-59745-153-6_7

    Chapter  Google Scholar 

  194. H.M. Itkonen, N. Engedal, E. Babaie, M. Luhr, I.J. Guldvik, S. Minner, J. Hohloch, M.C. Tsourlakis, T. Schlomm, I.G. Mills, UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene 34(28), 3744–3750 (2015). https://doi.org/10.1038/onc.2014.307

    Article  CAS  PubMed  Google Scholar 

  195. H.M. Itkonen, S. Minner, I.J. Guldvik, M.J. Sandmann, M.C. Tsourlakis, V. Berge, A. Svindland, T. Schlomm, I.G. Mills, O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 73(16), 5277–5287 (2013). https://doi.org/10.1158/0008-5472.CAN-13-0549

    Article  CAS  PubMed  Google Scholar 

  196. H.M. Itkonen, I.G. Mills, N-linked glycosylation supports cross-talk between receptor tyrosine kinases and AR. PLoS One 8(5), e65016 (2013). https://doi.org/10.1371/journal.pone.0065016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. T. Kamigaito, T. Okaneya, M. Kawakubo, H. Shimojo, O. Nishizawa, J. Nakayama, Overexpression of O-GlcNAc by prostate cancer cells is significantly associated with poor prognosis of patients. Prostate Cancer Prostatic Dis. 17(1), 18–22 (2014). https://doi.org/10.1038/pcan.2013.56

    Article  CAS  PubMed  Google Scholar 

  198. T.P. Lynch, C.M. Ferrer, S.R. Jackson, K.S. Shahriari, K. Vosseller, M.J. Reginato, Critical role of O-linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J. Biol. Chem. 287(14), 11070–11081 (2012). https://doi.org/10.1074/jbc.M111.302547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. A.K. Kaushik, A. Shojaie, K. Panzitt, R. Sonavane, H. Venghatakrishnan, M. Manikkam, A. Zaslavsky, V. Putluri, V.T. Vasu, Y.Q. Zhang, A.S. Khan, S. Lloyd, A.T. Szafran, S. Dasgupta, D.A. Bader, F. Stossi, H.W. Li, S. Samanta, X.H. Cao, E. Tsouko, S.X. Huang, D.E. Frigo, L. Chan, D.P. Edwards, B.A. Kaipparettu, N. Mitsiades, N.L. Weigel, M. Mancini, S.E. McGuire, R. Mehra, M.M. Ittmann, A.M. Chinnaiyan, N. Putluri, G.S. Palapattu, G. Michailidis, A. Sreekumar, Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nat. Commun. 7, 11612 (2016). https://doi.org/10.1038/ncomms11612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. L. Galluzzi, F. Pietrocola, J.M. Bravo-San Pedro, R.K. Amaravadi, E.H. Baehrecke, F. Cecconi, P. Codogno, J. Debnath, D.A. Gewirtz, V. Karantza, A. Kimmelman, S. Kumar, B. Levine, M.C. Maiuri, S.J. Martin, J. Penninger, M. Piacentini, D.C. Rubinsztein, H.U. Simon, A. Simonsen, A.M. Thorburn, G. Velasco, K.M. Ryan, G. Kroemer, Autophagy in malignant transformation and cancer progression. EMBO J. 34(7), 856–880 (2015). https://doi.org/10.15252/embj.201490784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. J. Goldsmith, B. Levine, J. Debnath, Autophagy and cancer metabolism. Methods Enzymol. 542, 25–57 (2014). https://doi.org/10.1016/B978-0-12-416618-9.00002-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. E. Ziparo, S. Petrungaro, E.S. Marini, D. Starace, S. Conti, A. Facchiano, A. Filippini, C. Giampietri, Autophagy in prostate cancer and androgen suppression therapy. Int. J. Mol. Sci. 14(6), 12090–12106 (2013). https://doi.org/10.3390/ijms140612090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. X. Xie, J.Y. Koh, S. Price, E. White, J.M. Mehnert, Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 5(4), 410–423 (2015). https://doi.org/10.1158/2159-8290.CD-14-1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. M. Garcia-Fernandez, P. Karras, A. Checinska, E. Canon, G.T. Calvo, G. Gomez-Lopez, M. Cifdaloz, A. Colmenar, L. Espinosa-Hevia, D. Olmeda, M.S. Soengas, Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy 12(10), 1776–1790 (2016). https://doi.org/10.1080/15548627.2016.1199301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. U. Santanam, W. Banach-Petrosky, C. Abate-Shen, M.M. Shen, E. White, R.S. DiPaola, Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev. 30(4), 399–407 (2016). https://doi.org/10.1101/gad.274134.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. J.M. Farrow, J.C. Yang, C.P. Evans, Autophagy as a modulator and target in prostate cancer. Nat. Rev. Urol. 11(9), 508–516 (2014). https://doi.org/10.1038/nrurol.2014.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. X. Chen, J. Lu, L. Xia, G. Li, Drug resistance of enzalutamide in CRPC. Curr. Drug Targets 19(6), 613–620 (2018). https://doi.org/10.2174/1389450118666170417144250

    Article  CAS  PubMed  Google Scholar 

  208. H.G. Nguyen, J.C. Yang, H.J. Kung, X.B. Shi, D. Tilki, P.N. Lara Jr., R.W. DeVere White, A.C. Gao, C.P. Evans, Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene 33(36), 4521–4530 (2014). https://doi.org/10.1038/onc.2014.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. M. Parikh, J.C. Hyunh, P. Lara, C.X. Pan, D. Robles, C.P. Evans, Enzalutamide and metformin combination therapy to overcome autophagy resistance in castration resistant prostate cancer (CRPC): current results from a phase I study. J. Clin. Oncol. 36(6), 281 (2018). https://doi.org/10.1200/JCO.2018.36.6_suppl.281

    Article  Google Scholar 

  210. B. Kranzbuhler, S. Salemi, A. Mortezavi, T. Sulser, D. Eberli, Combined N-terminal AR and autophagy inhibition increases the antitumor effect in enzalutamide sensitive and enzalutamide resistant prostate cancer cells. Prostate 79(2), 206–214 (2019). https://doi.org/10.1002/pros.23725

    Article  CAS  PubMed  Google Scholar 

  211. F. Hu, Y. Zhao, Y. Yu, J.M. Fang, R. Cui, Z.Q. Liu, X.L. Guo, Q. Xu, Docetaxel-mediated autophagy promotes chemoresistance in castration-resistant prostate cancer cells by inhibiting STAT3. Cancer Lett. 416, 24–30 (2018). https://doi.org/10.1016/j.canlet.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  212. R. Cristofani, M. Montagnani Marelli, M.E. Cicardi, F. Fontana, M. Marzagalli, P. Limonta, A. Poletti, R.M. Moretti, Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death Dis. 9(9), 889 (2018). https://doi.org/10.1038/s41419-018-0866-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Q. Wang, W.Y. He, Y.Z. Zeng, A. Hossain, X. Gou, Inhibiting autophagy overcomes docetaxel resistance in castration-resistant prostate cancer cells. Int. Urol. Nephrol. 50(4), 675–686 (2018). https://doi.org/10.1007/s11255-018-1801-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. H. Draz, A.A. Goldberg, V.I. Titorenko, E.S. Tomlinson Guns, S.H. Safe, J.T. Sanderson, Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK). Cell. Signal. 40, 172–182 (2017). https://doi.org/10.1016/j.cellsig.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  215. H. Draz, A.A. Goldberg, E.S. Tomlinson Guns, L. Fazli, S. Safe, J.T. Sanderson, Autophagy inhibition improves the chemotherapeutic efficacy of cruciferous vegetable-derived diindolymethane in a murine prostate cancer xenograft model. Invest. New Drugs 36(4), 718–725 (2018). https://doi.org/10.1007/s10637-018-0595-8

    Article  CAS  PubMed  Google Scholar 

  216. X. Zhu, M. Zhou, G.Y. Liu, X.L. Huang, W.Y. He, X. Gou, T. Jiang, Autophagy activated by the c-Jun N-terminal kinase-mediated pathway protects human prostate cancer PC3 cells from celecoxib-induced apoptosis. Exp. Ther. Med. 13(5), 2348–2354 (2017). https://doi.org/10.3892/etm.2017.4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. C. Yang, X. Ma, Z. Wang, X. Zeng, Z. Hu, Z. Ye, G. Shen, Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Devel. Ther. 11, 431–439 (2017). https://doi.org/10.2147/DDDT.S126964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Y.C. Lin, Y.T. Chang, M. Campbell, T.P. Lin, C.C. Pan, H.C. Lee, J.C. Shih, P.C. Chang, MAOA-a novel decision maker of apoptosis and autophagy in hormone refractory neuroendocrine prostate cancer cells. Sci. Rep. 7, 46338 (2017). https://doi.org/10.1038/srep46338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. S. Niture, M. Ramalinga, H. Kedir, D. Patacsil, S.S. Niture, J. Li, H. Mani, S. Suy, S. Collins, D. Kumar, TNFAIP8 promotes prostate cancer cell survival by inducing autophagy. Oncotarget 9(42), 26884–26899 (2018). https://doi.org/10.18632/oncotarget.25529

    Article  PubMed  PubMed Central  Google Scholar 

  220. J. Lu, W. Dong, H. He, Z. Han, Y. Zhuo, R. Mo, Y. Liang, J. Zhu, R. Li, H. Qu, L. Zhang, S. Wang, R. Ma, Z. Jia, W. Zhong, Autophagy induced by overexpression of DCTPP1 promotes tumor progression and predicts poor clinical outcome in prostate cancer. Int. J. Biol. Macromol. 118(Pt A), 599–609 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  221. C. Commisso, J. Debnath, Macropinocytosis fuels prostate cancer. Cancer Discov. 8(7), 800–802 (2018). https://doi.org/10.1158/2159-8290.CD-18-0513

    Article  PubMed  Google Scholar 

  222. S.M. Kim, T.T. Nguyen, A. Ravi, P. Kubiniok, B.T. Finicle, V. Jayashankar, L. Malacrida, J. Hou, J. Robertson, D. Gao, J. Chernoff, M.A. Digman, E.O. Potma, B.J. Tromberg, P. Thibault, A.L. Edinger, PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discov. 8(7), 866–883 (2018). https://doi.org/10.1158/2159-8290.CD-17-1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. A.S. Khan, D.E. Frigo, A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat. Rev. Urol. 14(3), 164–180 (2017). https://doi.org/10.1038/nrurol.2016.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. C.V. Vaz, R. Marques, M.G. Alves, P.F. Oliveira, J.E. Cavaco, C.J. Maia, S. Socorro, Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes. J. Cancer Res. Clin. Oncol. 142(1), 5–16 (2016). https://doi.org/10.1007/s00432-015-1992-4

    Article  CAS  PubMed  Google Scholar 

  225. D. Awad, T.L. Pulliam, C. Lin, S.R. Wilkenfeld, D.E. Frigo, Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Curr. Opin. Pharmacol. 41, 1–11 (2018). https://doi.org/10.1016/j.coph.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. L.M. Butler, M.M. Centenera, J.V. Swinnen, Androgen control of lipid metabolism in prostate cancer: novel insights and future applications. Endocr. Relat. Cancer 23(5), R219–R227 (2016). https://doi.org/10.1530/ERC-15-0556

    Article  CAS  PubMed  Google Scholar 

  227. U.C. Dadwal, E.S. Chang, U. Sankar, AR-CaMKK2 axis in prostate cancer and bone microenvironment. Front. Endocrinol. 9, 335 (2018). https://doi.org/10.3389/fendo.2018.00335

    Article  Google Scholar 

  228. T. Mitani, R. Yamaji, Y. Higashimura, N. Harada, Y. Nakano, H. Inui, Hypoxia enhances transcriptional activity of AR through hypoxia-inducible factor-1alpha in a low androgen environment. J. Steroid Biochem. Mol. Biol. 123(1-2), 58–64 (2011). https://doi.org/10.1016/j.jsbmb.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  229. N.J. Mabjeesh, M.T. Willard, C.E. Frederickson, H. Zhong, J.W. Simons, Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3′-kinase/protein kinase B in prostate cancer cells. Clin. Cancer Res. 9(7), 2416–2425 (2003)

    CAS  PubMed  Google Scholar 

  230. R.J. Rebello, R.B. Pearson, R.D. Hannan, L. Furic, Therapeutic approaches targeting MYC-driven prostate cancer. Genes (Basel) 8(2), E71 (2017). https://doi.org/10.3390/genes8020071

    Article  CAS  Google Scholar 

  231. C.V. Dang, A. Le, P. Gao, MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res. 15(21), 6479–6483 (2009). https://doi.org/10.1158/1078-0432.CCR-09-0889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. C. Priolo, S. Pyne, J. Rose, E.R. Regan, G. Zadra, C. Photopoulos, S. Cacciatore, D. Schultz, N. Scaglia, J. McDunn, A.M. De Marzo, M. Loda, AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer. Cancer Res. 74(24), 7198–7204 (2014). https://doi.org/10.1158/0008-5472.CAN-14-1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. D. Mossmann, S. Park, M.N. Hall, mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 18(12), 744–757 (2018). https://doi.org/10.1038/s41568-018-0074-8

    Article  CAS  PubMed  Google Scholar 

  234. J.S. Yu, W. Cui, Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143(17), 3050–3060 (2016). https://doi.org/10.1242/dev.137075

    Article  CAS  PubMed  Google Scholar 

  235. V. Nogueira, K.C. Patra, N. Hay, Selective eradication of cancer displaying hyperactive Akt by exploiting the metabolic consequences of Akt activation. Elife 7, e32213 (2018). https://doi.org/10.7554/eLife.32213

    Article  PubMed  PubMed Central  Google Scholar 

  236. F. Giunchi, M. Fiorentino, M. Loda, The metabolic landscape of prostate cancer. Eur. Urol. Oncol. 2, 28 (2019). https://doi.org/10.1016/j.euo.2018.06.010

    Article  PubMed  Google Scholar 

  237. J.V. Lee, A. Carrer, S. Shah, N.W. Snyder, S. Wei, S. Venneti, A.J. Worth, Z.F. Yuan, H.W. Lim, S. Liu, E. Jackson, N.M. Aiello, N.B. Haas, T.R. Rebbeck, A. Judkins, K.J. Won, L.A. Chodosh, B.A. Garcia, B.Z. Stanger, M.D. Feldman, I.A. Blair, K.E. Wellen, Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20(2), 306–319 (2014). https://doi.org/10.1016/j.cmet.2014.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. P. Toren, A. Zoubeidi, Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (review). Int. J. Oncol. 45(5), 1793–1801 (2014). https://doi.org/10.3892/ijo.2014.2601

    Article  CAS  PubMed  Google Scholar 

  239. A. Naguib, G. Mathew, C.R. Reczek, K. Watrud, A. Ambrico, T. Herzka, I.C. Salas, M.F. Lee, N. El-Amine, W. Zheng, M.E. Di Francesco, J.R. Marszalek, D.J. Pappin, N.S. Chandel, L.C. Trotman, Mitochondrial complex I inhibitors expose a vulnerability for selective killing of Pten-null cells. Cell Rep. 23(1), 58–67 (2018). https://doi.org/10.1016/j.celrep.2018.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. A. Csibi, S.M. Fendt, C. Li, G. Poulogiannis, A.Y. Choo, D.J. Chapski, S.M. Jeong, J.M. Dempsey, A. Parkhitko, T. Morrison, E.P. Henske, M.C. Haigis, L.C. Cantley, G. Stephanopoulos, J. Yu, J. Blenis, The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153(4), 840–854 (2013). https://doi.org/10.1016/j.cell.2013.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. A. Zabala-Letona, A. Arruabarrena-Aristorena, N. Martin-Martin, S. Fernandez-Ruiz, J.D. Sutherland, M. Clasquin, J. Tomas-Cortazar, J. Jimenez, I. Torres, P. Quang, P. Ximenez-Embun, R. Bago, A. Ugalde-Olano, A. Loizaga-Iriarte, I. Lacasa-Viscasillas, M. Unda, V. Torrano, D. Cabrera, S.M. van Liempd, Y. Cendon, E. Castro, S. Murray, A. Revandkar, A. Alimonti, Y. Zhang, A. Barnett, G. Lein, D. Pirman, A.R. Cortazar, L. Arreal, L. Prudkin, I. Astobiza, L. Valcarcel-Jimenez, P. Zuniga-Garcia, I. Fernandez-Dominguez, M. Piva, A. Caro-Maldonado, P. Sanchez-Mosquera, M. Castillo-Martin, V. Serra, N. Beraza, A. Gentilella, G. Thomas, M. Azkargorta, F. Elortza, R. Farras, D. Olmos, A. Efeyan, J. Anguita, J. Munoz, J.M. Falcon-Perez, R. Barrio, T. Macarulla, J.M. Mato, M.L. Martinez-Chantar, C. Cordon-Cardo, A.M. Aransay, K. Marks, J. Baselga, J. Tabernero, P. Nuciforo, B.D. Manning, K. Marjon, A. Carracedo, mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 547(7661), 109–113 (2017). https://doi.org/10.1038/nature22964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Q. Wang, C.G. Bailey, C. Ng, J. Tiffen, A. Thoeng, V. Minhas, M.L. Lehman, S.C. Hendy, G. Buchanan, C.C. Nelson, J.E. Rasko, J. Holst, AR and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res. 71(24), 7525–7536 (2011). https://doi.org/10.1158/0008-5472.CAN-11-1821

    Article  CAS  PubMed  Google Scholar 

  243. B.S. Carver, C. Chapinski, J. Wongvipat, H. Hieronymus, Y. Chen, S. Chandarlapaty, V.K. Arora, C. Le, J. Koutcher, H. Scher, P.T. Scardino, N. Rosen, C.L. Sawyers, Reciprocal feedback regulation of PI3K and AR signaling in PTEN-deficient prostate cancer. Cancer Cell 19(5), 575–586 (2011). https://doi.org/10.1016/j.ccr.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. M.P. Edlind, A.C. Hsieh, PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J. Androl. 16(3), 378–386 (2014). https://doi.org/10.4103/1008-682X.122876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. M. Crumbaker, L. Khoja, A.M. Joshua, AR signaling and the PI3K pathway in prostate cancer. Cancers (Basel) 9(4), E34 (2017). https://doi.org/10.3390/cancers9040034

    Article  CAS  Google Scholar 

  246. E. Audet-Walsh, C.R. Dufour, T. Yee, F.Z. Zouanat, M. Yan, G. Kalloghlian, M. Vernier, M. Caron, G. Bourque, E. Scarlata, L. Hamel, F. Brimo, A.G. Aprikian, J. Lapointe, S. Chevalier, V. Giguere, Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev. 31(12), 1228–1242 (2017). https://doi.org/10.1101/gad.299958.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. M. Marhold, E. Tomasich, A. El-Gazzar, G. Heller, A. Spittler, R. Horvat, M. Krainer, P. Horak, HIF1alpha regulates mTOR signaling and viability of prostate cancer stem cells. Mol. Cancer Res. 13(3), 556–564 (2015). https://doi.org/10.1158/1541-7786.MCR-14-0153-T

    Article  CAS  PubMed  Google Scholar 

  248. S.J. Barfeld, H.M. Itkonen, A. Urbanucci, I.G. Mills, Androgen-regulated metabolism and biosynthesis in prostate cancer. Endocr. Relat. Cancer 21(4), T57–T66 (2014). https://doi.org/10.1530/ERC-13-0515

    Article  CAS  PubMed  Google Scholar 

  249. L. Fabris, Y. Ceder, A.M. Chinnaiyan, G.W. Jenster, K.D. Sorensen, S. Tomlins, T. Visakorpi, G.A. Calin, The potential of microRNAs as prostate cancer biomarkers. Eur. Urol. 70(2), 312–322 (2016). https://doi.org/10.1016/j.eururo.2015.12.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. W. Qu, S.M. Ding, G. Cao, S.J. Wang, X.H. Zheng, G.H. Li, miR-132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio. 6(7), 735–741 (2016). https://doi.org/10.1002/2211-5463.12086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. A. Singh, C. Happel, S.K. Manna, G. Acquaah-Mensah, J. Carrerero, S. Kumar, P. Nasipuri, K.W. Krausz, N. Wakabayashi, R. Dewi, L.G. Boros, F.J. Gonzalez, E. Gabrielson, K.K. Wong, G. Girnun, S. Biswal, Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J. Clin. Invest. 123(7), 2921–2934 (2013). https://doi.org/10.1172/JCI66353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. J.W. Shih, L.Y. Wang, C.L. Hung, H.J. Kung, C.L. Hsieh, Non-coding RNAs in castration-resistant prostate cancer: regulation of AR signaling and cancer metabolism. Int. J. Mol. Sci. 16(12), 28943–28978 (2015). https://doi.org/10.3390/ijms161226138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. M. Xin, Z. Qiao, J. Li, J. Liu, S. Song, X. Zhao, P. Miao, T. Tang, L. Wang, W. Liu, X. Yang, K. Dai, G. Huang, miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 7(28), 44252–44265 (2016). https://doi.org/10.18632/oncotarget.10020

    Article  PubMed  PubMed Central  Google Scholar 

  254. X. Li, Y.T. Chen, S. Josson, N.K. Mukhopadhyay, J. Kim, M.R. Freeman, W.C. Huang, MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One 8(8), e70987 (2013). https://doi.org/10.1371/journal.pone.0070987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. W. Liu, A. Le, C. Hancock, A.N. Lane, C.V. Dang, T.W. Fan, J.M. Phang, Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc. Natl. Acad. Sci. 109(23), 8983–8988 (2012). https://doi.org/10.1073/pnas.1203244109

    Article  PubMed  PubMed Central  Google Scholar 

  256. C.A. Lyssiotis, A.C. Kimmelman, Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27(11), 863–875 (2017). https://doi.org/10.1016/j.tcb.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. L. Marignol, K. Rivera-Figueroa, T. Lynch, D. Hollywood, Hypoxia, notch signalling, and prostate cancer. Nat. Rev. Urol. 10(7), 405–413 (2013). https://doi.org/10.1038/nrurol.2013.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. H. Geng, C. Xue, J. Mendonca, X.X. Sun, Q. Liu, P.N. Reardon, Y. Chen, K. Qian, V. Hua, A. Chen, F. Pan, J. Yuan, S. Dang, T.M. Beer, M.S. Dai, S.K. Kachhap, D.Z. Qian, Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat. Commun. 9(1), 4972 (2018). https://doi.org/10.1038/s41467-018-07411-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. K. Zaugg, Y. Yao, P.T. Reilly, K. Kannan, R. Kiarash, J. Mason, P. Huang, S.K. Sawyer, B. Fuerth, B. Faubert, T. Kalliomaki, A. Elia, X. Luo, V. Nadeem, D. Bungard, S. Yalavarthi, J.D. Growney, A. Wakeham, Y. Moolani, J. Silvester, A.Y. Ten, W. Bakker, K. Tsuchihara, S.L. Berger, R.P. Hill, R.G. Jones, M. Tsao, M.O. Robinson, C.B. Thompson, G. Pan, T.W. Mak, Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25(10), 1041–1051 (2011). https://doi.org/10.1101/gad.1987211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Y. Jin, L. Wang, S. Qu, X. Sheng, A. Kristian, G.M. Maelandsmo, N. Pallmann, E. Yuca, I. Tekedereli, K. Gorgulu, N. Alpay, A. Sood, G. Lopez-Berestein, L. Fazli, P. Rennie, B. Risberg, H. Waehre, H.E. Danielsen, B. Ozpolat, F. Saatcioglu, STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO Mol. Med. 7(3), 315–331 (2015). https://doi.org/10.15252/emmm.201404181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. N.N. Tam, Y. Gao, Y.K. Leung, S.M. Ho, Androgenic regulation of oxidative stress in the rat prostate: involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth. Am. J. Pathol. 163(6), 2513–2522 (2003). https://doi.org/10.1016/S0002-9440(10)63606-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. D.A. Frohlich, M.T. McCabe, R.S. Arnold, M.L. Day, The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27(31), 4353–4362 (2008). https://doi.org/10.1038/onc.2008.79

    Article  CAS  PubMed  Google Scholar 

  263. L. Khandrika, B. Kumar, S. Koul, P. Maroni, H.K. Koul, Oxidative stress in prostate cancer. Cancer Lett. 282(2), 125–136 (2009). https://doi.org/10.1016/j.canlet.2008.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. G.J. Samaranayake, C.I. Troccoli, M. Huynh, R.D.Z. Lyles, K. Kage, A. Win, V. Lakshmanan, D. Kwon, Y. Ban, S.X. Chen, E.R. Zarco, M. Jorda, K.L. Burnstein, P. Rai, Thioredoxin-1 protects against AR-induced redox vulnerability in castration-resistant prostate cancer. Nat. Commun. 8(1), 1204 (2017). https://doi.org/10.1038/s41467-017-01269-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. K. Li, Q. Zheng, X. Chen, Y. Wang, D. Wang, J. Wang, Isobavachalcone induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in human prostate cancer PC-3 cells. Oxid. Med. Cell. Longev. 2018, 1915828 (2018). https://doi.org/10.1155/2018/1915828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Y. Yan, L. Chang, H. Tian, L. Wang, Y. Zhang, T. Yang, G. Li, W. Hu, K. Shah, G. Chen, Y. Guo, 1-Pyrroline-5-carboxylate released by prostate cancer cell inhibit T cell proliferation and function by targeting SHP1/cytochrome c oxidoreductase/ROS axis. J. Immunother. Cancer 6(1), 148 (2018). https://doi.org/10.1186/s40425-018-0466-z

    Article  PubMed  PubMed Central  Google Scholar 

  267. K. Shiga, M. Hara, T. Nagasaki, T. Sato, H. Takahashi, H. Takeyama, Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel) 7(4), 2443–2458 (2015). https://doi.org/10.3390/cancers7040902

    Article  Google Scholar 

  268. E. Giannoni, F. Bianchini, L. Masieri, S. Serni, E. Torre, L. Calorini, P. Chiarugi, Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 70(17), 6945–6956 (2010). https://doi.org/10.1158/0008-5472.CAN-10-0785

    Article  CAS  PubMed  Google Scholar 

  269. F. Lopes-Coelho, S. Gouveia-Fernandes, J. Serpa, Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumour Biol. 40(2), 1010428318756203 (2018). https://doi.org/10.1177/1010428318756203

    Article  CAS  PubMed  Google Scholar 

  270. T. Fiaschi, A. Marini, E. Giannoni, M.L. Taddei, P. Gandellini, A. De Donatis, M. Lanciotti, S. Serni, P. Cirri, P. Chiarugi, Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 72(19), 5130–5140 (2012). https://doi.org/10.1158/0008-5472.CAN-12-1949

    Article  CAS  PubMed  Google Scholar 

  271. P. Chiarugi, P. Paoli, P. Cirri, Tumor microenvironment and metabolism in prostate cancer. Semin. Oncol. 41(2), 267–280 (2014). https://doi.org/10.1053/j.seminoncol.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  272. N. Pertega-Gomes, J.R. Vizcaino, J. Attig, S. Jurmeister, C. Lopes, F. Baltazar, A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer 14, 352 (2014). https://doi.org/10.1186/1471-2407-14-352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. A. Giatromanolaki, M.I. Koukourakis, A. Koutsopoulos, S. Mendrinos, E. Sivridis, The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biol. Ther. 13(13), 1284–1289 (2012). https://doi.org/10.4161/cbt.21785

    Article  PubMed  PubMed Central  Google Scholar 

  274. T. Fiaschi, E. Giannoni, M.L. Taddei, P. Cirri, A. Marini, G. Pintus, C. Nativi, B. Richichi, A. Scozzafava, F. Carta, E. Torre, C.T. Supuran, P. Chiarugi, Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle 12(11), 1791–1801 (2013). https://doi.org/10.4161/cc.24902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. A. Santi, A. Caselli, P. Paoli, D. Corti, G. Camici, G. Pieraccini, M.L. Taddei, S. Serni, P. Chiarugi, P. Cirri, The effects of CA IX catalysis products within tumor microenvironment. Cell Commun. Signal 11, 81 (2013). https://doi.org/10.1186/1478-811X-11-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. E.H. Cheteh, M. Augsten, H. Rundqvist, J. Bianchi, V. Sarne, L. Egevad, V.J. Bykov, A. Ostman, K.G. Wiman, Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death Dis. 8(6), e2848 (2017). https://doi.org/10.1038/cddis.2017.225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Z.D. Nassar, A.T. Aref, D. Miladinovic, C.Y. Mah, G.V. Raj, A.J. Hoy, L.M. Butler, Peri-prostatic adipose tissue: the metabolic microenvironment of prostate cancer. BJU Int. 121(Suppl 3), 9–21 (2018). https://doi.org/10.1111/bju.14173

    Article  PubMed  Google Scholar 

  278. J. Huang, A. Duran, M. Reina-Campos, T. Valencia, E.A. Castilla, T.D. Muller, M.H. Tschop, J. Moscat, M.T. Diaz-Meco, Adipocyte p62/SQSTM1 suppresses tumorigenesis through opposite regulations of metabolism in adipose tissue and tumor. Cancer Cell 33(4), 770–784.e776 (2018). https://doi.org/10.1016/j.ccell.2018.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. E. Gazi, J. Dwyer, N.P. Lockyer, P. Gardner, J.H. Shanks, J. Roulson, C.A. Hart, N.W. Clarke, M.D. Brown, Biomolecular profiling of metastatic prostate cancer cells in bone marrow tissue using FTIR microspectroscopy: a pilot study. Anal. Bioanal. Chem. 387(5), 1621–1631 (2007). https://doi.org/10.1007/s00216-006-1093-y

    Article  CAS  PubMed  Google Scholar 

  280. S. Balaban, Z.D. Nassar, A.Y. Zhang, E. Hosseini-Beheshti, M.M. Centenera, M. Schreuder, H.M. Lin, A. Aishah, B. Varney, F. Liu-Fu, L.S. Lee, S.R. Nagarajan, R.F. Shearer, R.A. Hardie, N.L. Raftopulos, M.S. Kakani, D.N. Saunders, J. Holst, L.G. Horvath, L.M. Butler, A.J. Hoy, Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol. Cancer Res. 17, 949 (2019). https://doi.org/10.1158/1541-7786.MCR-18-0347

    Article  CAS  PubMed  Google Scholar 

  281. Y. Tokuda, Y. Satoh, C. Fujiyama, S. Toda, H. Sugihara, Z. Masaki, Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU Int. 91(7), 716–720 (2003). https://doi.org/10.1046/j.1464-410X.2003.04218.x

    Article  CAS  PubMed  Google Scholar 

  282. J.D. Diedrich, E. Rajagurubandara, M.K. Herroon, G. Mahapatra, M. Huttemann, I. Podgorski, Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1alpha activation. Oncotarget 7(40), 64854–64877 (2016). https://doi.org/10.18632/oncotarget.11712

    Article  PubMed  PubMed Central  Google Scholar 

  283. K. Fujita, P. Landis, B.K. McNeil, C.P. Pavlovich, Serial prostate biopsies are associated with an increased risk of erectile dysfunction in men with prostate cancer on active surveillance. J. Urol. 182(6), 2664–2669 (2009). https://doi.org/10.1016/j.juro.2009.08.044

    Article  PubMed  Google Scholar 

  284. M.G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10(9), 671–684 (2011). https://doi.org/10.1038/nrd3504

    Article  CAS  PubMed  Google Scholar 

  285. J. Kurhanewicz, D.B. Vigneron, K. Brindle, E.Y. Chekmenev, A. Comment, C.H. Cunningham, R.J. DeBerardinis, G.G. Green, M.O. Leach, S.S. Rajan, Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13(2), 81–97 (2011). https://doi.org/10.1593/neo.101102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. A.G. Wibmer, I.A. Burger, E. Sala, H. Hricak, W.A. Weber, H.A. Vargas, Molecular imaging of prostate cancer. Radiographics 36(1), 142–159 (2015). https://doi.org/10.1148/rg.2016150059

    Article  PubMed  Google Scholar 

  287. J.H. Ardenkjaer-Larsen, Hyperpolarized 13C magnetic resonance imaging-principles and applications, in Molecular Imaging: Principles and Practice, (People’s Medical Publishing House, Shelton, CT, 2009), pp. 377–388

    Google Scholar 

  288. P. Bhattacharya, B.D. Ross, R. Bünger, Cardiovascular applications of hyperpolarized contrast media and metabolic tracers. Exp. Biol. Med. 234(12), 1395–1416 (2009). https://doi.org/10.3181/0904-MR-135

    Article  CAS  Google Scholar 

  289. K. Brindle, New approaches for imaging tumour responses to treatment. Nat. Rev. Cancer 8(2), 94 (2008)

    Article  CAS  PubMed  Google Scholar 

  290. N. Zacharias, J. Lee, S. Ramachandran, S. Shanmugavelandy, J. McHenry, P. Dutta, S. Millward, S. Gammon, E. Efstathiou, P. Troncoso, D.E. Frigo, D. Piwnica-Worms, C.J. Logothetis, S.N. Maity, M.A. Titus, P. Bhattacharya, AR signaling in castration-resistant prostate cancer alters hyperpolarized pyruvate to lactate conversion and lactate levels in vivo. Mol. Imaging Biol. 21, 86 (2019). https://doi.org/10.1007/s11307-018-1199-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. P. Dutta, G.V. Martinez, R.J. Gillies, A new horizon of DNP technology: application to in-vivo 13 C magnetic resonance spectroscopy and imaging. Biophys. Re. 5(3), 271–281 (2013)

    Article  CAS  Google Scholar 

  292. P. Dutta, A. Le, D.L. Vander Jagt, T. Tsukamoto, G.V. Martinez, C.V. Dang, R.J. Gillies, Evaluation of LDH-A and glutaminase inhibition in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors. Cancer Res. 73, 4190 (2013). https://doi.org/10.1158/0008-5472.CAN-13-0465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. M.J. Albers, R. Bok, A.P. Chen, C.H. Cunningham, M.L. Zierhut, V.Y. Zhang, S.J. Kohler, J. Tropp, R.E. Hurd, Y.-F. Yen, Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 68(20), 8607–8615 (2008). https://doi.org/10.1158/0008-5472.CAN-08-0749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, P.E. Larson, A.L. Harzstark, M. Ferrone, M. van Criekinge, J.W. Chang, R. Bok, I. Park, Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C] pyruvate. Sci. Transl. Med. 5(198), 198ra108 (2013). https://doi.org/10.1126/scitranslmed.3006070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. R. Aggarwal, D.B. Vigneron, J. Kurhanewicz, Hyperpolarized 1-[13C]-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer. Eur. Urol. 72(6), 1028–1029 (2017). https://doi.org/10.1016/j.eururo.2017.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. J.M. Lupo, A.P. Chen, M.L. Zierhut, R.A. Bok, C.H. Cunningham, J. Kurhanewicz, D.B. Vigneron, S.J. Nelson, Analysis of hyperpolarized dynamic 13C lactate imaging in a transgenic mouse model of prostate cancer. Magn. Reson. Imaging 28(2), 153–162 (2010). https://doi.org/10.1016/j.mri.2009.07.007

    Article  CAS  PubMed  Google Scholar 

  297. H.-Y. Chen, P.E. Larson, R.A. Bok, C. von Morze, R. Sriram, R.D. Santos, J.D. Santos, J.W. Gordon, N. Bahrami, M. Ferrone, Assessing prostate cancer aggressiveness with hyperpolarized dual-agent 3D dynamic imaging of metabolism and perfusion. Cancer Res. 77, 3207 (2017). https://doi.org/10.1158/0008-5472.CAN-16-2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. J.E. Lee, C.J. Diederich, R. Bok, R. Sriram, R.D. Santos, S.M. Noworolski, V.A. Salgaonkar, M.S. Adams, D.B. Vigneron, J. Kurhanewicz, Assessing high-intensity focused ultrasound treatment of prostate cancer with hyperpolarized 13C dual-agent imaging of metabolism and perfusion. NMR Biomed. 32, e3962 (2018). https://doi.org/10.1002/nbm.3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. S.S. Tee, I. Suster, S. Truong, S. Jeong, R. Eskandari, V. DiGialleonardo, J.A. Alvarez, H.N. Aldeborgh, K.R. Keshari, Targeted AKT inhibition in prostate cancer cells and spheroids reduces aerobic glycolysis and generation of hyperpolarized [1-(13)C] lactate. Mol. Cancer Res. 16(3), 453–460 (2018). https://doi.org/10.1158/1541-7786.MCR-17-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. H. Dafni, P.E. Larson, S. Hu, H.A. Yoshihara, C.S. Ward, H.S. Venkatesh, C. Wang, X. Zhang, D.B. Vigneron, S.M. Ronen, Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-1 and myc activity downstream of platelet-derived growth factor receptor. Cancer Res. 70, 7400 (2010). https://doi.org/10.1158/0008-5472.CAN-10-0883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. K.R. Keshari, D.M. Wilson, M. Van Criekinge, R. Sriram, B.L. Koelsch, Z.J. Wang, H.F. VanBrocklin, D.M. Peehl, T. O’brien, D. Sampath, Metabolic response of prostate cancer to nicotinamide phophoribosyltransferase inhibition in a hyperpolarized MR/PET compatible bioreactor. Prostate 75(14), 1601–1609 (2015). https://doi.org/10.1002/pros.23036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. B.T. Scroggins, M. Matsuo, A.O. White, K. Saito, J.P. Munasinghe, C. Sourbier, K. Yamamoto, V. Diaz, Y. Takakusagi, K. Ichikawa, Hyperpolarized [1-13C]-pyruvate magnetic resonance spectroscopic imaging of prostate cancer in vivo predicts efficacy of targeting the Warburg effect. Clin. Cancer Res. 24, 3137 (2018). https://doi.org/10.1158/1078-0432.CCR-17-1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. A. Lodi, S.M. Woods, S.M. Ronen, Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells. NMR Biomed. 26(3), 299–306 (2013). https://doi.org/10.1002/nbm.2848

    Article  CAS  PubMed  Google Scholar 

  304. C. Canapè, G. Catanzaro, E. Terreno, M. Karlsson, M.H. Lerche, P.R. Jensen, Probing treatment response of glutaminolytic prostate cancer cells to natural drugs with hyperpolarized [5-13C] glutamine. Magn. Reson. Med. 73(6), 2296–2305 (2015). https://doi.org/10.1002/mrm.25360

    Article  CAS  PubMed  Google Scholar 

  305. K.R. Keshari, V. Sai, Z.J. Wang, H.F. VanBrocklin, J. Kurhanewicz, D.M. Wilson, Hyperpolarized [1-13C] dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J. Nucl. Med. 54(6), 922–928 (2013). https://doi.org/10.2967/jnumed.112.115402

    Article  CAS  PubMed  Google Scholar 

  306. K.R. Keshari, D.M. Wilson, A.P. Chen, R. Bok, P.E. Larson, S. Hu, M.V. Criekinge, J.M. Macdonald, D.B. Vigneron, J. Kurhanewicz, Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J. Am. Chem. Soc. 131(48), 17591–17596 (2009). https://doi.org/10.1021/ja9049355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. C.E. Christensen, M. Karlsson, J.R. Winther, P.R. Jensen, M.H. Lerche, Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes. J. Biol. Chem. 289(4), 2344–2352 (2014). https://doi.org/10.1074/jbc.M113.498626

    Article  CAS  PubMed  Google Scholar 

  308. D.M. Wilson, K.R. Keshari, P.E. Larson, A.P. Chen, S. Hu, M. Van Criekinge, R. Bok, S.J. Nelson, J.M. Macdonald, D.B. Vigneron, Multi-compound polarization by DNP allows simultaneous assessment of multiple enzymatic activities in vivo. J. Magn. Reson. 205(1), 141–147 (2010). https://doi.org/10.1016/j.jmr.2010.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. S.S. Gambhir, Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2(9), 683 (2002)

    Article  CAS  PubMed  Google Scholar 

  310. T. Hara, N. Kosaka, H. Kishi, PET imaging of prostate cancer using carbon-11-choline. J. Nucl. Med. 39(6), 990–995 (1998)

    CAS  PubMed  Google Scholar 

  311. J. Kotzerke, J. Prang, B. Neumaier, B. Volkmer, A. Guhlmann, K. Kleinschmidt, R. Hautmann, S.N. Reske, Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur. J. Nucl. Med. 27(9), 1415–1419 (2000). https://doi.org/10.1007/s002590000309

    Article  CAS  PubMed  Google Scholar 

  312. M.A. Seltzer, S.A. Jahan, R. Sparks, D.B. Stout, N. Satyamurthy, M. Dahlbom, M.E. Phelps, J.R. Barrio, Radiation dose estimates in humans for 11C-acetate whole-body PET. J. Nucl. Med. 45(7), 1233–1236 (2004)

    CAS  PubMed  Google Scholar 

  313. B. Savir-Baruch, L. Zanoni, D.M. Schuster, Imaging of prostate cancer using fluciclovine. Urol. Clin. North Am. 45(3), 489–502 (2018). https://doi.org/10.1016/j.ucl.2018.03.015

    Article  PubMed  Google Scholar 

  314. J. Cardinale, M. Schäfer, M. Benešová, U. Bauder-Wüst, K. Leotta, M. Eder, O.C. Neels, U. Haberkorn, F.L. Giesel, K. Kopka, Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J. Nucl. Med. 58(3), 425–431 (2017). https://doi.org/10.2967/jnumed.116.181768

    Article  CAS  PubMed  Google Scholar 

  315. R. Liu, J. Cao, X. Gao, J. Zhang, L. Wang, B. Wang, L. Guo, X. Hu, Z. Wang, Overall survival of cancer patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumour Biol. 37(10), 14083–14088 (2016). https://doi.org/10.1007/s13277-016-5228-2

    Article  CAS  PubMed  Google Scholar 

  316. S. Halabi, E.J. Small, P.W. Kantoff, M.W. Kattan, E.B. Kaplan, N.A. Dawson, E.G. Levine, B.A. Blumenstein, N.J. Vogelzang, Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J. Clin. Oncol. 21(7), 1232–1237 (2003). https://doi.org/10.1200/JCO.2003.06.100

    Article  PubMed  Google Scholar 

  317. H.I. Scher, G. Heller, A. Molina, G. Attard, D.C. Danila, X. Jia, W. Peng, S.K. Sandhu, D. Olmos, R. Riisnaes, R. McCormack, T. Burzykowski, T. Kheoh, M. Fleisher, M. Buyse, J.S. de Bono, Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 33(12), 1348–1355 (2015). https://doi.org/10.1200/JCO.2014.55.3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. O. Sartor, R.E. Coleman, S. Nilsson, D. Heinrich, S.I. Helle, J.M. O’Sullivan, N.J. Vogelzang, O. Bruland, S. Kobina, S. Wilhelm, L. Xu, M. Shan, M.W. Kattan, C. Parker, An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223. Ann. Oncol. 28(5), 1090–1097 (2017). https://doi.org/10.1093/annonc/mdx044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. L.R. Euceda, M.K. Andersen, M.-B. Tessem, S.A. Moestue, M.T. Grinde, T.F. Bathen, NMR-based prostate cancer metabolomics, in Prostate Cancer, (Springer, New York, NY, 2018), pp. 237–257

    Chapter  Google Scholar 

  320. N.V. Reo, NMR-based metabolomics. Drug Chem. Toxicol. 25(4), 375–382 (2002). https://doi.org/10.1081/DCT-120014789

    Article  CAS  PubMed  Google Scholar 

  321. J.L. Markley, R. Brüschweiler, A.S. Edison, H.R. Eghbalnia, R. Powers, D. Raftery, D.S. Wishart, The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43, 34–40 (2017). https://doi.org/10.1016/j.copbio.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  322. H.K. Kim, Y.H. Choi, R. Verpoorte, NMR-based metabolomic analysis of plants. Nat. Protoc. 5(3), 536 (2010)

    Article  CAS  PubMed  Google Scholar 

  323. M.L. García-Martín, M. Adrados, M. Ortega, I. Fernández González, P. López-Larrubia, J. Viano, J. García-Segura, Quantitative 1H MR spectroscopic imaging of the prostate gland using LCModel and a dedicated basis-set: correlation with histologic findings. Magn. Reson. Med. 65(2), 329–339 (2011). https://doi.org/10.1002/mrm.22631

    Article  CAS  PubMed  Google Scholar 

  324. N.J. Serkova, E.J. Gamito, R.H. Jones, C. O’donnell, J.L. Brown, S. Green, H. Sullivan, T. Hedlund, E.D. Crawford, The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 68(6), 620–628 (2008). https://doi.org/10.1002/pros.20727

    Article  CAS  PubMed  Google Scholar 

  325. M.B. Tessem, M.G. Swanson, K.R. Keshari, M.J. Albers, D. Joun, Z.L. Tabatabai, J.P. Simko, K. Shinohara, S.J. Nelson, D.B. Vigneron, Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn. Reson. Med. 60(3), 510–516 (2008). https://doi.org/10.1002/mrm.21694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. D. Kumar, A. Gupta, A. Mandhani, S.N. Sankhwar, Metabolomics-derived prostate cancer biomarkers: fact or fiction? J. Proteome Res. 14(3), 1455–1464 (2015). https://doi.org/10.1021/pr5011108

    Article  CAS  PubMed  Google Scholar 

  327. M.G. Swanson, K.R. Keshari, Z.L. Tabatabai, J.P. Simko, K. Shinohara, P.R. Carroll, A.S. Zektzer, J. Kurhanewicz, Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn. Reson. Med. 60(1), 33–40 (2008). https://doi.org/10.1002/mrm.21647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. R.A. Komoroski, J.C. Holder, A.A. Pappas, A.E. Finkbeiner, 31P NMR of phospholipid metabolites in prostate cancer and benign prostatic hyperplasia. Magn. Reson. Med. 65(4), 911–913 (2011). https://doi.org/10.1002/mrm.22677

    Article  CAS  PubMed  Google Scholar 

  329. G. Zadra, M. Loda, Metabolic vulnerabilities of prostate cancer: diagnostic and therapeutic opportunities. Cold Spring Harb. Perspect. Med. 8(10), a030569 (2018). https://doi.org/10.1101/cshperspect.a030569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. T. Cajka, O. Fiehn, Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 88(1), 524–545 (2015). https://doi.org/10.1021/acs.analchem.5b04491

    Article  CAS  PubMed  Google Scholar 

  331. D.S. Wishart, Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 15(7), 473 (2016)

    Article  CAS  PubMed  Google Scholar 

  332. Y.-F. Xu, W. Lu, J.D. Rabinowitz, Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography–mass spectrometry-based metabolomics. Anal. Chem. 87(4), 2273–2281 (2015). https://doi.org/10.1021/ac504118y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. N.R. Kitteringham, R.E. Jenkins, C.S. Lane, V.L. Elliott, B.K. Park, Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B 877(13), 1229–1239 (2009)

    Article  CAS  Google Scholar 

  334. R. Thapar, M.A. Titus, Recent advances in metabolic profiling and imaging of prostate cancer. Curr. Metab. 2(1), 53–69 (2014)

    Article  CAS  Google Scholar 

  335. B. Guo, B. Chen, A. Liu, W. Zhu, S. Yao, Liquid chromatography-mass spectrometric multiple reaction monitoring-based strategies for expanding targeted profiling towards quantitative metabolomics. Curr. Drug Metab. 13(9), 1226–1243 (2012)

    Article  CAS  PubMed  Google Scholar 

  336. G. Zadra, C. Photopoulos, M. Loda, The fat side of prostate cancer. Biochim. Biophys. Acta 1831(10), 1518–1532 (2013). https://doi.org/10.1016/j.bbalip.2013.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. J. Whitburn, C.M. Edwards, P. Sooriakumaran, Metformin and prostate cancer: a new role for an old drug. Curr. Urol. Rep. 18, 1–7 (2017). https://doi.org/10.1007/s11934-017-0693-8

    Article  Google Scholar 

  338. K.A. Richards, L. Ji, V.L. Cryns, T.M. Downs, E.J. Abel, D.F. Jarrard, Metformin use is associated with improved survival for patients with advanced prostate cancer on androgen deprivation therapy. J. Urol. 200, 1256–1263 (2018). https://doi.org/10.1016/j.juro.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  339. E.H. Allott, M.R. Abern, L. Gerber, C.J. Keto, W.J. Aronson, M.K. Terris, C.J. Kane, C.L. Amling, M.R. Cooperberg, P.G. Moorman, S.J. Freedland, Metformin does not affect risk of biochemical recurrence following radical prostatectomy: results from the SEARCH database. Prostate Cancer Prostatic Dis. 16(4), 391–397 (2013). https://doi.org/10.1038/pcan.2013.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. M. Rieken, E. Xylinas, L. Kluth, J.J. Crivelli, J. Chrystal, T. Faison, Y. Lotan, P.I. Karakiewicz, H. Fajkovic, M. Babjuk, A. Kautzky-Willer, A. Bachmann, D.S. Scherr, S.F. Shariat, Association of diabetes mellitus and metformin use with oncological outcomes of patients with non-muscle-invasive bladder cancer. BJU Int. 112(8), 1105–1112 (2013). https://doi.org/10.1111/bju.12448

    Article  CAS  PubMed  Google Scholar 

  341. S.Y. Wang, C.S. Chuang, C.H. Muo, S.T. Tu, M.C. Lin, F.C. Sung, C.H. Kao, Metformin and the incidence of cancer in patients with diabetes: a nested case-control study. Diabetes Care 36(9), e155–e156 (2013). https://doi.org/10.2337/dc13-0708

    Article  PubMed  PubMed Central  Google Scholar 

  342. D. Soranna, L. Scotti, A. Zambon, C. Bosetti, G. Grassi, A. Catapano, C. La Vecchia, G. Mancia, G. Corrao, Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 17(6), 813–822 (2012). https://doi.org/10.1634/theoncologist.2011-0462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. L. Azoulay, S. Dell’Aniello, B. Gagnon, M. Pollak, S. Suissa, Metformin and the incidence of prostate cancer in patients with type 2 diabetes. Cancer Epidemiol. Biomarkers Prev. 20(2), 337–344 (2011). https://doi.org/10.1158/1055-9965.EPI-10-0940

    Article  CAS  PubMed  Google Scholar 

  344. L. Bensimon, H. Yin, S. Suissa, M.N. Pollak, L. Azoulay, The use of metformin in patients with prostate cancer and the risk of death. Cancer Epidemiol. Biomarkers Prev. 23(10), 2111–2118 (2014). https://doi.org/10.1158/1055-9965.EPI-14-0056

    Article  CAS  PubMed  Google Scholar 

  345. C.J. Currie, C.D. Poole, E.A. Gale, The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52(9), 1766–1777 (2009). https://doi.org/10.1007/s00125-009-1440-6

    Article  CAS  PubMed  Google Scholar 

  346. D. Kaushik, R.J. Karnes, M.S. Eisenberg, L.J. Rangel, R.E. Carlson, E.J. Bergstralh, Effect of metformin on prostate cancer outcomes after radical prostatectomy. Urol. Oncol. 32(1), 43.e41–43.e47 (2014). https://doi.org/10.1016/j.urolonc.2013.05.005

    Article  CAS  Google Scholar 

  347. D. Margel, D. Urbach, L.L. Lipscombe, C.M. Bell, G. Kulkarni, P.C. Austin, N. Fleshner, Association between metformin use and risk of prostate cancer and its grade. J. Natl. Cancer Inst. 105(15), 1123–1131 (2013). https://doi.org/10.1093/jnci/djt170

    Article  PubMed  Google Scholar 

  348. T. Patel, G. Hruby, K. Badani, C. Abate-Shen, J.M. McKiernan, Clinical outcomes after radical prostatectomy in diabetic patients treated with metformin. Urology 76(5), 1240–1244 (2010). https://doi.org/10.1016/j.urology.2010.03.059

    Article  PubMed  Google Scholar 

  349. K.K. Tsilidis, D. Capothanassi, N.E. Allen, E.C. Rizos, D.S. Lopez, K. van Veldhoven, C. Sacerdote, D. Ashby, P. Vineis, I. Tzoulaki, J.P. Ioannidis, Metformin does not affect cancer risk: a cohort study in the U.K. Clinical Practice Research Datalink analyzed like an intention-to-treat trial. Diabetes Care 37(9), 2522–2532 (2014). https://doi.org/10.2337/dc14-0584

    Article  CAS  PubMed  Google Scholar 

  350. T. Feng, X. Sun, L.E. Howard, A.C. Vidal, A.R. Gaines, D.M. Moreira, R. Castro-Santamaria, G.L. Andriole, S.J. Freedland, Metformin use and risk of prostate cancer: results from the REDUCE study. Cancer Prev. Res. (Phila.) 8(11), 1055–1060 (2015). https://doi.org/10.1158/1940-6207.CAPR-15-0141

    Article  CAS  Google Scholar 

  351. A.M. Joshua, V.E. Zannella, M.R. Downes, B. Bowes, K. Hersey, M. Koritzinsky, M. Schwab, U. Hofmann, A. Evans, T. van der Kwast, J. Trachtenberg, A. Finelli, N. Fleshner, J. Sweet, M. Pollak, A pilot ‘window of opportunity’ neoadjuvant study of metformin in localised prostate cancer. Prostate Cancer Prostatic Dis. 17(3), 252–258 (2014). https://doi.org/10.1038/pcan.2014.20

    Article  CAS  PubMed  Google Scholar 

  352. Medicine UNLo, ClinicalTrials.gov (2015). https://clinicaltrials.gov/ct2/show/NCT01433913

  353. A. Vancura, P. Bu, M. Bhagwat, J. Zeng, I. Vancurova, Metformin as an anticancer agent. Trends Pharmacol. Sci. 39, 867–878 (2018). https://doi.org/10.1016/j.tips.2018.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. X. Liu, I.L. Romero, L.M. Litchfield, E. Lengyel, J.W. Locasale, Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metab. 24, 728–739 (2016). https://doi.org/10.1016/j.cmet.2016.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. V. Zingales, A. Distefano, M. Raffaele, A. Zanghi, I. Barbagallo, L. Vanella, Metformin: a bridge between diabetes and prostate cancer. Front. Oncol. 7, 1–7 (2017). https://doi.org/10.3389/fonc.2017.00243

    Article  Google Scholar 

  356. T.M. Ashton, W.G. McKenna, L.A. Kunz-Schughart, G.S. Higgins, Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24, 2482–2490 (2018). https://doi.org/10.1158/1078-0432.CCR-17-3070

    Article  CAS  PubMed  Google Scholar 

  357. L.B. Sullivan, D.Y. Gui, A.M. Hosios, L.N. Bush, E. Freinkman, M.G. Vander Heiden, Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162(3), 552–563 (2015). https://doi.org/10.1016/j.cell.2015.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. K. Birsoy, T. Wang, W.W. Chen, E. Freinkman, M. Abu-Remaileh, D.M. Sabatini, An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162(3), 540–551 (2015). https://doi.org/10.1016/j.cell.2015.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. R.J. DeBerardinis, N.S. Chandel, Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016). https://doi.org/10.1126/sciadv.1600200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. J.R. Molina, Y. Sun, M. Protopopova, S. Gera, M. Bandi, C. Bristow, T. McAfoos, P. Morlacchi, J. Ackroyd, A.-nA. Agip, G. Al-Atrash, J. Asara, J. Bardenhagen, C.C. Carrillo, C. Carroll, E. Chang, S. Ciurea, J.B. Cross, B. Czako, A. Deem, N. Daver, J.F. de Groot, J.-w. Dong, N. Feng, G. Gao, J. Gay, M.G. Do, J. Greer, V. Giuliani, J. Han, L. Han, V.K. Henry, J. Hirst, S. Huang, Y. Jiang, Z. Kang, T. Khor, S. Konoplev, Y.-h. Lin, G. Liu, A. Lodi, T. Lofton, H. Ma, M. Mahendra, P. Matre, R. Mullinax, M. Peoples, A. Petrocchi, J. Rodriguez-Canale, R. Serreli, T. Shi, M. Smith, Y. Tabe, J. Theroff, S. Tiziani, Q. Xu, Q. Zhang, F. Muller, R.A. DePinho, C. Toniatti, G.F. Draetta, T.P. Heffernan, M. Konopleva, P. Jones, M.E. Di Francesco, J.R. Marszalek, An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018). https://doi.org/10.1038/s41591-018-0052-4

    Article  CAS  PubMed  Google Scholar 

  361. D.A. Bader, S.M. Hartig, V. Putluri, C. Foley, M.P. Hamilton, E.A. Smith, P.K. Saha, A. Panigrahi, C. Walker, L. Zong, H. Martini-Stoica, R. Chen, K. Rajapakshe, C. Coarfa, A. Sreekumar, N. Mitsiades, J.A. Bankson, M.M. Ittmann, B.W. O’Malley, N. Putluri, S.E. McGuire, Mitochondrial pyruvate import is a metabolic vulnerability in AR-driven prostate cancer. Nat. Metab. 1, 70–85 (2019). https://doi.org/10.1038/s42255-018-0002-y

    Article  PubMed  Google Scholar 

  362. Q. Wang, R.A. Hardie, A.J. Hoy, M. Van Geldermalsen, D. Gao, L. Fazli, M.C. Sadowski, S. Balaban, M. Schreuder, R. Nagarajah, J.J.L. Wong, C. Metierre, N. Pinello, N.J. Otte, M.L. Lehman, M. Gleave, C.C. Nelson, C.G. Bailey, W. Ritchie, J.E. Rasko, J. Holst, Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J. Pathol. 236, 278–289 (2015). https://doi.org/10.1002/path.4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. C. Yang, B. Ko, C.T. Hensley, L. Jiang, A.T. Wasti, J. Kim, J. Sudderth, M.A. Calvaruso, L. Lumata, M. Mitsche, J. Rutter, M.E. Merritt, R.J. DeBerardinis, Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014). https://doi.org/10.1016/j.molcel.2014.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. C. Adams, R.C. Richmond, D.L. Santos Ferreira, W. Spiller, V.Y. Tan, J. Zheng, P. Wurtz, J.L. Donovan, F.C. Hamdy, D.E. Neal, J.A. Lane, G. Davey Smith, C.L. Relton, R.A. Eeles, B.E. Henderson, C.A. Haiman, Z. Kote-Jarai, F.R. Schumacher, A. Amin Al Olama, S. Benlloch, K. Muir, S.I. Berndt, D.V. Conti, F. Wiklund, S.J. Chanock, S.M. Gapstur, V.L. Stevens, C.M. Tangen, J. Batra, J.A. Clements, H. Gronberg, N. Pashayan, J. Schleutker, D. Albanes, A. Wolk, C.M.L. West, L.A. Mucci, G. Cancel-Tassin, S. Koutros, K.D. Sorensen, L. Maehle, R.C. Travis, R. Hamilton, S.A. Ingles, B.S. Rosenstein, Y.J. Lu, G.G. Giles, A.S. Kibel, A. Vega, M. Kogevinas, K.L. Penney, J.Y. Park, J.L. Stanford, C. Cybulski, B.G. Nordestgaard, H. Brenner, C. Maier, J. Kim, E.M. John, M.R. Teixeira, S.L. Neuhausen, K. DeRuyck, A. Razack, L.F. Newcomb, D. Lessel, R.P. Kaneva, N. Usmani, F. Claessens, P. Townsend, M. Gago Dominguez, M.J. Roobol, F. Menegaux, K.T. Khaw, L.A. Cannon-Albright, H. Pandha, S.N. Thibodeau, R.M. Martin, Circulating metabolic biomarkers of screen-detected prostate cancer in the ProtecT study. Cancer Epidemiol. Biomarkers Prev. 28, 208 (2019). https://doi.org/10.1158/1055-9965.EPI-18-0079

    Article  PubMed  Google Scholar 

  365. J. Huang, A.M. Mondul, S.J. Weinstein, S. Koutros, A. Derkach, E. Karoly, J.N. Sampson, S.C. Moore, S.I. Berndt, D. Albanes, Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Br. J. Cancer 115(9), 1087–1095 (2016). https://doi.org/10.1038/bjc.2016.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. A.M. Mondul, S.C. Moore, S.J. Weinstein, E.D. Karoly, J.N. Sampson, D. Albanes, Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int. J. Cancer 137(9), 2124–2132 (2015). https://doi.org/10.1002/ijc.29576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. A.M. Mondul, S.C. Moore, S.J. Weinstein, S. Mannisto, J.N. Sampson, D. Albanes, 1-stearoylglycerol is associated with risk of prostate cancer: results from serum metabolomic profiling. Metabolomics 10(5), 1036–1041 (2014). https://doi.org/10.1007/s11306-014-0643-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. J.R. Mayers, M.G. Vander Heiden, Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem. Sci. 40(3), 130–140 (2015). https://doi.org/10.1016/j.tibs.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. S.M. Davidson, T. Papagiannakopoulos, B.A. Olenchock, J.E. Heyman, M.A. Keibler, A. Luengo, M.R. Bauer, A.K. Jha, J.P. O’Brien, K.A. Pierce, D.Y. Gui, L.B. Sullivan, T.M. Wasylenko, L. Subbaraj, C.R. Chin, G. Stephanopolous, B.T. Mott, T. Jacks, C.B. Clish, M.G. Vander Heiden, Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23(3), 517–528 (2016). https://doi.org/10.1016/j.cmet.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. J.A. Reisz, A. D’Alessandro, Measurement of metabolic fluxes using stable isotope tracers in whole animals and human patients. Curr. Opin. Clin. Nutr. Metab. Care 20(5), 366–374 (2017). https://doi.org/10.1097/MCO.0000000000000393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. B. Faubert, K.Y. Li, L. Cai, C.T. Hensley, J. Kim, L.G. Zacharias, C. Yang, Q.N. Do, S. Doucette, D. Burguete, H. Li, G. Huet, Q. Yuan, T. Wigal, Y. Butt, M. Ni, J. Torrealba, D. Oliver, R.E. Lenkinski, C.R. Malloy, J.W. Wachsmann, J.D. Young, K. Kernstine, R.J. DeBerardinis, Lactate metabolism in human lung tumors. Cell 171(2), 358–371.e359 (2017). https://doi.org/10.1016/j.cell.2017.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. C.T. Hensley, B. Faubert, Q. Yuan, N. Lev-Cohain, E. Jin, J. Kim, L. Jiang, B. Ko, R. Skelton, L. Loudat, M. Wodzak, C. Klimko, E. McMillan, Y. Butt, M. Ni, D. Oliver, J. Torrealba, C.R. Malloy, K. Kernstine, R.E. Lenkinski, R.J. DeBerardinis, Metabolic heterogeneity in human lung tumors. Cell 164(4), 681–694 (2016). https://doi.org/10.1016/j.cell.2015.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. A.H. Davies, H. Beltran, A. Zoubeidi, Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15(5), 271–286 (2018). https://doi.org/10.1038/nrurol.2018.22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kelly Kage (UT MD Anderson Cancer Center) for assistance with the figures. This work was supported by grants from the National Institutes of Health (R01CA184208 to D.E.F.; P50CA094056, U54CA151668 and R21CA185536 to P.B.), American Cancer Society (RSG-16-084-01-TBE to D.E.F.), an Institutional Research Grant (to P.B.), startup grants from the University of Texas MD Anderson Cancer Center (to P.B. and D.E.F.), a grant from the Gulf Coast Consortium (to P.B.) and generous philanthropic contributions to The University of Texas MD Anderson Moon Shots Program (to D.E.F.) and Koch Foundation Genitourinary Medical Oncology Funds (to P.B.). This work was also supported by an Antje Wuelfrath Gee and Harry Gee, Jr. Family Legacy Scholarship (to C.L.), an American Legion Auxiliary Fellowship (to D.A.), a CPRIT Research Training Grant Award (RP170067 to T.C.S.) and a GCC/Keck Center CCBTP postdoctoral fellowship (CPRIT RP170593 to S.P.). M.T. also acknowledges support from the Neubauer Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Frigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, C. et al. (2019). Prostate Cancer Energetics and Biosynthesis. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_10

Download citation

Publish with us

Policies and ethics