Effective Utilization of Image Information Using Data Mining Technique

  • D. SaravananEmail author
  • Dennis Joseph
  • S. Vaithyasubramanian
Part of the Intelligent Systems Reference Library book series (ISRL, volume 172)


In recent, video databases data mining is widely used for various applications such as crime prevention, web searching, cultural heritage, advertising, news broadcasting, video, education and training and military. The advancement of databases specially the multimedia dates are in need to efficiently handle due to the growing amount of multimedia data include audio video, sound, animation, image etc. Revolution in the extensive database of computerized medias gives rise to the study of useful information from database. The study such as multimedia information retrieval, productive storage and organization of available information are in focus. This paper discuss how effectively handle the image data’s.


Data mining Image mining Image data base Information retrieval Querying Image histogram Image color cue Hierarchical clustering 


  1. 1.
    Regunathan, R., Xiong, Z., Divakaran, A., Ishikawa, Y.: Generation of sports highlights using a combination of supervised and unsupervised learning in the audio domain. In: ICICS-PCM Conference, Singapore (2003)Google Scholar
  2. 2.
    Divakaran, A., Peker, K.A., Radhakrishnan, R., Xiong, Z., Cabasson, R.: Video sumarization using MPEG-7 motion activity and audio features. In: Rosenfeld, A., DoDoermann, D., DeMenthon, D. (eds.) Video Mining. Kluwer Academic Publishers (2003)Google Scholar
  3. 3.
    Saravanan, D.: Video data image retrieval using—BRICH. World J. Eng. 14(4), 318–323 (2017)Google Scholar
  4. 4.
    Saravanan, D.: Image frame mining using indexing technique. In: Data Engineering and Intelligent Computing, Chapter 12, pp. 127–137. Springer Book series. ISBN:978-981-10-3223-3, July 2017Google Scholar
  5. 5.
    Xie, L., Chang, S-F., Divakaran, A., Sun, H.: Unsupervised mining of statistical temporal structures in video. In: Rosenfeld, A., Doermann, D., DeMenthon, D. (eds.) Video Mining. Kluwer Academic Publishers (2003)Google Scholar
  6. 6.
    Alemu, Y., Koh, J.B., Ikram, M., Kim, D-K.: Image retrieval in multimedia databases: a survey. In: Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (2009)Google Scholar
  7. 7.
    Hilbert, D.: Uber die stetige Abbildung einer Linie auf ein Flachenstuck. Math. Annalen, 38–40. [10] Bartolini, I., Ciacci, P., Waas, F.: Feedback bypass: a new approach to interactive similarity query processing. In: Proceeding of 27th Int’l Conference Very Large Data Base (VLDB’01), pp. 201–210 (2001)Google Scholar
  8. 8.
    Brunelli, R., Mich, O.: Image retrieval by examples. IEEE Trans. Multimed. 2(3), 164–171 (2000)CrossRefGoogle Scholar
  9. 9.
    Saravanan, D.: Effective video data retrieval using image key frame selection. In: Advances in Intelligent Systems and computing, pp. 145–155 (2017)Google Scholar
  10. 10.
    Saravanan, D.: Clustering the irregularity events in intelligence surrounding systems. J. Pure Appl. Math. 119(12), 15025–15035 (2018) (Special Issues), ISSN:1311-8080Google Scholar
  11. 11.
    Fan, J., Luo, H.: Emantic video classification by integrating flexible mixture model with adaptive em algorithm. In: ACMSIGMM, pp. 9–16 (2003)Google Scholar
  12. 12.
    Wang. J.Z.: A text book on. In: Integrated Region-Based Image Retrieval. Kluwer Academic Publishers (2001)Google Scholar
  13. 13.
    Zhang, J., Hsu, W., Lee, M.L.: An information driven framework for image mining. In: Proceedings of 12th International Conference on Database and Expert Systems Applications (DEXA). Munich, Germany (2001)Google Scholar
  14. 14.
    Saravanan, D.: Effective video content retrieval using image attributes. EAI Endorsed Trans. Energy Web Inf. Technol. 5(18), e8, 1–5 (2018)Google Scholar
  15. 15.
    Saravanan, D.: Efficient video indexing and retrieval using hierarchical clustering techniques. Adv. Intell. Syst. Comput. 712, 1–8 (2018). ISBN:978-981-10-8227Google Scholar
  16. 16.
    Vailaya, A., Figueiredo, M., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • D. Saravanan
    • 1
    Email author
  • Dennis Joseph
    • 1
  • S. Vaithyasubramanian
    • 2
  1. 1.Faculty of Operations and ITICFAI Business School (IBS), Hyderabad. The ICFAI Foundation for Higher Education (IFHE) (Deemed to Be University U/S 3 of the UGC Act 1956)HyderabadIndia
  2. 2.Faculty of Mathematics, Department of MathematicsSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations