A Stable Routing Algorithm Based on Link Prediction Method for Clustered VANET

  • Bhasker DappuriEmail author
  • Malothu Amru
  • Allam Mahesh Venkatanaga
Part of the Intelligent Systems Reference Library book series (ISRL, volume 172)


VANETs are high class, dynamic and consistent and forma main module of Intelligent Transport System (ITS) which is self-controlled, wheeled and stimulating class of MANET. We use RIVLP to improve clustering. In this paper, a new algorithm is developed and compared with existing algorithms which show improved performance in terms of stability up gradation, delay time reduction, lifetime of both CH and cluster and throughput.


VANET’s Intelligent Transport System (ITS) Clustering 


  1. 1.
    Çalhan, A.: A fuzzy logic based clustering strategy for improving vehicular ad-hoc network performance. Sadhana 40(2), 351–367 (2015)CrossRefGoogle Scholar
  2. 2.
    Gajare, S., Deore, P., Wagh, S.: Traffic management in VANET using clustering. Int. J. Eng. Tech. Res. (IJETR) 2(5) (2014). ISSN: 2321-0869Google Scholar
  3. 3.
    Mottahedi, M., Jabbehdari, S., Adabi, S.: IBCAV: intelligent based clustering algorithm in VANET. Int. J. Comput. Sci. Issues (IJCSI) 10(1), 538 (2013)Google Scholar
  4. 4.
    Bali, R.S., Kumar, N., Rodrigues, J.J.: Clustering in vehicular ad hoc networks: taxonomy, challenges and solutions. Veh. Commun. 1(3), 134–152 (2014)Google Scholar
  5. 5.
    Yang, F., Lin, Z., Tang, Y.: A traffic flow based clustering scheme for VANETs. Sens. Transducers 180(10), 110 (2014)Google Scholar
  6. 6.
    Huang, L., Wu, J., You, F., Lv, Z., Song, H.: Cyclist social force model at unsignalized intersections with heterogeneous traffic. IEEE Trans. Industr. Inf. 13(2), 782–792 (2016). Scholar
  7. 7.
    Li, W., Song, H.: ART: an attack-resistant trust management scheme for securing vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 17(4), 960–969 (2015). Scholar
  8. 8.
    Ahmed, S.H., Bouk, S.H., Yaqub, M.A., Kim, D., Song, H., Lloret, J.: CODIE: controlled data and interest evaluation in vehicular named data networks. IEEE Trans. Veh. Technol. 65(6), 3954–3963 (2016). Scholar
  9. 9.
    Nie, L., Jiang, D., Guo, L., Yu, S., Song, H.: Traffic matrix prediction and estimation based on deep learning for data center networks. In: 2016 IEEE Globecom Workshops (GC Wkshps), IEEE, pp. 1–6 (2016).
  10. 10.
    Blanco, J.I., Song, H.: Simulation of communications and networking in vehicular Ad Hoc networks. In: Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test, pp. 547–570. CRC Press (2014)Google Scholar
  11. 11.
    Saini, H., Mahapatra, R.: Implementation and performance analysis of AODV routing protocol in VANETs. Int. J. Emerg. Sci. Eng. 2319-6378 (2014)Google Scholar
  12. 12.
    Lin, Y., Song, H.: DynaCHINA: real-time traffic estimation and prediction. IEEE Pervasive Comput. 4, 65 (2006)Google Scholar
  13. 13.
    Ramesh, G.P., Rajan, A.: Microstrip antenna designs for RF energy harvesting. In: 2014 International Conference on Communications and Signal Processing (ICCSP), IEEE (2014)Google Scholar
  14. 14.
    Mohammad, S.A., Michele, C.W.: Using traffic flow for cluster formation in vehicular ad-hoc networks. In: IEEE Local Computer Network Conference, IEEE, pp. 631–636 (2010)Google Scholar
  15. 15.
    Rawashdeh, Z.Y., Mahmud, S.M.: A novel algorithm to form stable clusters in vehicular ad hoc networks on highways. EURASIP J. Wirel. Commun. Netw. 1, 15 (2012)CrossRefGoogle Scholar
  16. 16.
    Ramesh, G.P.: Performance Analysis of Traffic with Optical Broker for Load Balancing and Multicasting in Software Defined Data Center NetworkingGoogle Scholar
  17. 17.
    Vodopivec, S., Hajdinjak, M., Bešter, J., Kos, A.: Vehicle interconnection metric and clustering protocol for improved connectivity in vehicular ad hoc networks. EURASIP J. Wirel. Commun. Netw. 1, 170 (2014)CrossRefGoogle Scholar
  18. 18.
    Mehmood, A., Mauri, J.L., Noman, M., Song, H.: Improvement of the wireless sensor network lifetime using LEACH with vice-cluster head. Ad Hoc Sens. Wirel. Netw. 28(1–2), 1–7 (2015)Google Scholar
  19. 19.
    Mehmood, A., Lloret, J., Sendra, S.: A secure and low-energy zone-based wireless sensor networks routing protocol for pollution monitoring. Wirel. Commun. Mobile Comput. 16(17), 2869–2883 (2016)CrossRefGoogle Scholar
  20. 20.
    Mehmood, A., Umar, M.M., Song, H.: ICMDS: secure inter-cluster multiple-key distribution scheme for wireless sensor networks. Ad Hoc Netw. 55, 97–106 (2017)CrossRefGoogle Scholar
  21. 21.
    Li, C., Ye, M., Chen, G., Wu, J.: An energy-efficient unequal clustering mechanism for wireless sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, IEEE, p. 8 (2005)Google Scholar
  22. 22.
    Mehmood, A., Nouman, M., Umar, M.M., Song, H.: ESBL: an energy-efficient scheme by balancing load in group based WSNs. KSII Trans. Internet Inf. Syst. 10(10) (2016)Google Scholar
  23. 23.
    Zhang, Z., Boukerche, A., Pazzi, R.: A novel multi-hop clustering scheme for vehicular ad-hoc networks. In: Proceedings of the 9th ACM International Symposium on Mobility Management and Wireless Access, pp. 19–26. ACM (2011)Google Scholar
  24. 24.
    Mehmood, A., Khanan, A., Mohamed, A.H., Mahfooz, S., Song, H., Abdullah, S.: ANTSC: an intelligent Naïve Bayesian probabilistic estimation practice for traffic flow to form stable clustering in VANET. IEEE Access 6, 4452–4461 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bhasker Dappuri
    • 1
    Email author
  • Malothu Amru
    • 1
  • Allam Mahesh Venkatanaga
    • 1
  1. 1.Department of ECECMR Engineering CollegeHyderabadIndia

Personalised recommendations