Skip to main content

A 128-bit Tunable True Random Number Generator with Digital Clock Manager

  • Chapter
  • First Online:
  • 2188 Accesses

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 172))

Abstract

This paper introduces a 128 bit Tunable genuine Random number generator for cryptographic applications. In this, Digital clock supervisor (DCM), Dynamic incomplete reconfiguration (DPR), Beat Frequency Detection (BFD)—TRNG (True irregular number generator) methods were utilized. Cryptographic computations can be executed on Field Programmable Gate Arrays (FPGAs). In this work a True Random Number Generator (TRNG) used for cryptography application is proposed. The current work relies upon ring oscillators. The proposed work relies upon standard of Beat Frequency Detection (BFD). To the deficiencies and Jitter from the oscillators being the hotspot for the arbitrariness, we proposed an enhanced BFD—TRNG setup fitting for FPGA based applications. This work is finished by utilizing Xilinx programming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bhasin, S., Danger, J.L., Guilley, S., Ngo, X.T., Sauvage, L.: Hardware Trojan horses in cryptographic IP cores. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, IEEE, pp. 15–29 (2013)

    Google Scholar 

  2. Cherkaoui, A., Fischer, V., Aubert, A., Fesquet, L.: A self-timed ring based true random number generator. In: 2013 IEEE 19th International Symposium on Asynchronous Circuits and Systems, IEEE, pp. 99–106 (2013)

    Google Scholar 

  3. Dichtl, M., Golić, J.D.: High-speed true random number generation with logic gates only. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 45–62. Springer, Heidelberg (2007)

    Google Scholar 

  4. Geary, R.C.: The frequency distribution of the quotient of two normal variates. J. Roy. Stat. Soc. 93(3), 442–446 (1930)

    Article  Google Scholar 

  5. Jin, Y., Makris, Y.: Hardware Trojans in wireless cryptographic ICs. IEEE Des. Test Comput. 27(1), 26–35 (2010)

    Article  Google Scholar 

  6. Johnson, A.P., Saha, S., Chakraborty, R.S., Mukhopadhyay, D., Gören, S.: Fault attack on AES via hardware Trojan insertion by dynamic partial reconfiguration of FPGA over ethernet. In: Proceedings of the 9th Workshop on Embedded Systems Security, p. 1. ACM (2014)

    Google Scholar 

  7. Lie, W., Feng-Yan, W.: Dynamic partial reconfiguration in FPGAs. In: 2009 Third International Symposium on Intelligent Information Technology Application, IEEE, vol. 2, pp. 445–448 (2009)

    Google Scholar 

  8. Paillier, P., Verbauwhede, I. (eds.): Vol. 4727 of Lecture Notes in Computer Science, pp. 45–62. Springer, Heidelberg (2007)

    Google Scholar 

  9. Ramesh, G.P., Kumar, N.M.: Radiometric analysis of Ankle Edema via RZF antenna for biomedical applications. Wireless Pers. Commun. 102(2), 1785–1798 (2018)

    Google Scholar 

  10. Ramesh, G.P., Rajan, A.: RF energy harvesting systems for low power applications. Int. J. Technol. Eng. Sci., 1085–1091 (2013)

    Google Scholar 

  11. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Booz-Allen and Hamilton Inc Mclean Va (2001)

    Google Scholar 

  12. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2006)

    Article  MathSciNet  Google Scholar 

  13. Tang, Q., Kim, B., Lao, Y., Parhi, K.K., Kim, C.H.: True random number generator circuits based on single-and multi-phase beat frequency detection. In: Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, IEEE, pp. 1–4 (2014)

    Google Scholar 

  14. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detection. IEEE Des. Test Comput. 27(1), 10–25 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mounika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mounika, B., Qureshi, V.A., Srinivas, A. (2020). A 128-bit Tunable True Random Number Generator with Digital Clock Manager. In: Balas, V., Kumar, R., Srivastava, R. (eds) Recent Trends and Advances in Artificial Intelligence and Internet of Things. Intelligent Systems Reference Library, vol 172. Springer, Cham. https://doi.org/10.1007/978-3-030-32644-9_1

Download citation

Publish with us

Policies and ethics