Skip to main content

Transcriptomics and Metabolomics in Amyotrophic Lateral Sclerosis

  • Conference paper
  • First Online:
GeNeDis 2018

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1195))

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving progressive and selective loss of motor neurons, muscle weakness, paralysis and death. The pathogenesis of ALS is not clearly understood, while reliable prognostic markers have not been identified to detect symptoms at earlier time points. The rapid development of microarray technology offers great potential for simultaneous analysis of the transcriptional expression of thousands of genes, aiming to determine novel candidate targets for efficient treatment. Additionally, metabolomics, as a high-throughput approach, is gaining significant attention in ALS research providing an opportunity to develop predictive biomarkers that may be utilized as indicators of clinical symptoms of ALS. In this review, recent evidences from gene expression profiling studies in ALS are illustrated in order to examine molecular signatures related to the disease’s pathogenesis and potential discovery of therapeutic targets. Moreover, potent challenges are presented regarding the utilization of the metabolomics approach as a diagnostic tool in context with distinctive biomarkers’ identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronica E, Baas F, Iyer A, ten Asbroek A, Morello G, Cavallaro S (2015) Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiol Dis 74:359–376

    Article  CAS  PubMed  Google Scholar 

  • Babu GN, Kumar A, Chandra R, Puri SK, Singh RL, Kalita J, Misra UK (2008) Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem Int 52:1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Bingol K (2018) Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods. High Throughput 7:E9

    Article  PubMed  CAS  Google Scholar 

  • Blasco H, Corcia P, Moreau C, Veau S, Fournier C, Vourc’h P, Emond P, Gordon P, Pradat PF, Praline J, Devos D, Nadal-Desbarats L, Andres CR (2010) 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 5:e13223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutahar N, Wierinckx A, Camdessanche J, Antoine J, Reynaud E, Lassabliere F, Lachuer J, Borg J (2011) Differential effect of oxidative or exitotoxic stress on the transcriptional profile of amyotrophic lateral sclerosis-linked mutant SOD1 cultured neurons. J Neurosci Res 89:1439–1450

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Jorgenson JA, Newhouse BJ, Shefner JM, Agnese W (2018) Edaravone in the treatment of amyotrophic lateral sclerosis: efficacy and access to therapy – a roundtable discussion. Am J Manag Care 24(9 Suppl):S175–S186

    PubMed  Google Scholar 

  • Bucchia M, Ramirez A, Parente V, Simone C, Nizzardo M, Magri F, Dametti S, Corti S (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin Ther 37:668–680

    Article  PubMed  Google Scholar 

  • Buratti E, Baralle F (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343

    Article  CAS  PubMed  Google Scholar 

  • Buratti E, Baralle F (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    Article  CAS  PubMed  Google Scholar 

  • Cheah B, Vucic S, Krishnan A, Kiernan M (2010) Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem 17:1942–1199

    Article  CAS  PubMed  Google Scholar 

  • Choi JK, Küstermann E, Dedeoglu A, Jenkins BG (2009) Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 30:2143–2150

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper-Knock J, Kirby J, Ferraiuolo L, Heath P, Rattray M, Shaw P (2012) Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 8:518–530

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira GP, Maximino J, Maschietto M, Zanoteli E, Puga R, Lima L, Carraro D, Chadi G (2014) Early gene expression changes in skeletal muscle from SOD1(G93A) amyotrophic lateral sclerosis animal model. Cell Mol Neurobiol 34:451–462

    Article  PubMed  CAS  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie I, Boeve B, Boxer A, Baker M, Rutherford N, Nicholson A, Finch N, Flynn H, Adamson J et al (2010) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  Google Scholar 

  • Deng H, Chen W, Hong S, Boycott K, Gorrie G, Siddique N, Yang Y (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset alS and ALS/dementia. Nature 477:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Gao K, Jankovic J (2014) The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 10(6):337–348

    Article  CAS  PubMed  Google Scholar 

  • Droppelmann C, Campos-Melo D, Ishtiaq M, Volkening K, Strong M (2014) RNA metabolism in ALS: when normal processes become pathological. Amyotroph Lateral Scler Frontotemporal Degener 15:321–336

    Article  CAS  PubMed  Google Scholar 

  • Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D (2011) Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 59:1719–1731

    Article  PubMed  PubMed Central  Google Scholar 

  • Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D (2014) Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 62:1241–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenway M, Andersen P, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J, Morrison K, Green A, Acharya K, Brown R, Hardiman O (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kim S, Wang Y, Dinasarapu A, Subramaniam S (2014) Statistical insights into major human muscular diseases. Hum Mol Genet 23:3772–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath P, Kirby J, Shaw P (2013) Investigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics. Front Cell Neurosci 7:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffman NJ (2017) Omics and exercise: global approaches for mapping exercise biological networks. Cold Spring Harb Perspect Med 7:a029884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Honda D, Ishigaki S, Iguchi Y, Fujioka Y, Udagawa T, Masuda A, Ohno K, Katsuno M, Sobue G (2013) The TDP-43 neurotoxicity in Drosophila. PLoS One 8:e57214

    Article  Google Scholar 

  • Krokidis MG, Vlamos P (2018) Transcriptomics in amyotrophic lateral sclerosis. Front Biosci (Elite Ed) 10:103–121

    Article  Google Scholar 

  • Kudo L, Parfenova L, Vi N, Lau K, Pomakian J, Valdmanis P, Rouleau G, Vinters H, Wiedau-Pazos M, Karsten S (2010) Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet 19(16):3233–3253

    Article  CAS  PubMed  Google Scholar 

  • Kumimoto E, Fore T, Zhang B (2013) Transcriptome profiling following neuronal and glial expression of ALS-linked SOD1 in Drosophila. G3 (Bethesda) 3:695–708

    Article  CAS  Google Scholar 

  • Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226

    Article  CAS  PubMed  Google Scholar 

  • Maximino J, de Oliveira G, Alves C, Chadi G (2014) Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) Amyotrophic Lateral Sclerosis mouse model. Front Cell Neurosci 8:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narayanan R, Mangelsdorf M, Panwar A, Butler T, Noakes P, Wallace R (2012) Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Frontotemporal Degener 14:252–260

    Article  PubMed  CAS  Google Scholar 

  • Nardo G, Iennaco R, Fusi N, Heath P, Marino M, Trolese M, Ferraiuolo L, Lawrence N, Shaw P, Bendotti C (2013) Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. Brain 136:3305–3332

    Article  PubMed  Google Scholar 

  • Niessen HG, Debska-Vielhaber G, Sander K, Angenstein F, Ludolph AC, Hilfert L, Willker W, Leibfritz D, Heinze HJ, Kunz WS, Vielhaber S (2007) Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25:1669–1677

    Article  PubMed  Google Scholar 

  • Patin F, Baranek T, Vourc’h P, Nadal-Desbarats L, Goossens JF, Marouillat S, Dessein AF, Descat A, Hounoum BM, Bruno C, Watier H, Si-Tahar M, Leman S, Lecron JC, Andres CR, Corcia P, Blasco H (2016) Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism. Neurotherapeutics 13:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renton AE, Chio A, Traynor B (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 1:17–23

    Article  CAS  Google Scholar 

  • Rosen D, Siddique T, Patterson D, Figlewicz D, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan J, Deng H, Brown R Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, Beecher C, Harrison S, Vouros P, Flarakos J, Vigneau-Callahan K, Matson TD, Newhall KM, Beal MF, Brown RH Jr, Kaddurah-Daouk R (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saris C, Groen E, van Vught P, van Es M, Blauw H, Veldink J, van den Berg L (2013) Gene expression profile of SOD1-G93A mouse spinal cord, blood and muscle. Amyotroph Lateral Scler Frontotemporal Degener 14:190–198

    Article  CAS  PubMed  Google Scholar 

  • Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933

    Article  CAS  Google Scholar 

  • Sreedharan J, Blair I, Tripathi V, Hu X, Vance C, Rogelj B, Ackerley S, Durnall J, Williams K, Buratti E, Baralle F, de Belleroche J, Mitchell J, Leigh R, Al-Chalabi A, Miller C, Nicholson G, Shaw C (2008) TDP43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Watanabe K, Yuki S, Akimoto M, Sakata T, Palumbo J (2017) Edaravone and its clinical development for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 18(sup1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Byun J, Pennathur S (2010) Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol 30:500–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Hentati A, Deng H, Dabbagh O, Sasaki T, Hirano M, Hung W, Ouahchi K, Yan J, Azim A, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29:160–165

    Article  CAS  Google Scholar 

  • Yu L, Guan Y, Wu X, Chen Y, Liu Z, Du H, Wang X (2013) Wnt Signaling is altered by spinal cord neuronal dysfunction in amyotrophic lateral sclerosis transgenic mice. Neurochem Res 38:1904–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan L, Hanson K, Kim S, Tare A, Tibbetts R (2013) Identification of genetic modifiers of ALS/FTLD-related RNA-binding proteins TDP-43 and FUS have common downstream RNA targets in cortical neurons. FEBS Open Bio 4:1–10

    Google Scholar 

  • Zoccolella S, Simone IL, Capozzo R, Tortelli R, Leo A, D’Errico E, Logroscino G (2011) An exploratory study of serum urate levels in patients with amyotrophic lateral sclerosis. J Neurol 258:238–243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios G. Krokidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krokidis, M.G. (2020). Transcriptomics and Metabolomics in Amyotrophic Lateral Sclerosis. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1195. Springer, Cham. https://doi.org/10.1007/978-3-030-32633-3_29

Download citation

Publish with us

Policies and ethics