Skip to main content

A Microscale Mathematical Blood Flow Model for Understanding Cardiovascular Diseases

  • Conference paper
  • First Online:
GeNeDis 2018

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1194))

Abstract

The blood plasma flow through a swarm of red blood cells in capillaries is modeled as an axisymmetric Stokes flow within inverted prolate spheroidal solid-fluid unitary cells. The solid internal spheroid represents a particle of the swarm, while the external spheroid surrounds the spheroidal particle and contains the analogous amount of fluid that corresponds to the fluid volume fraction of the swarm. Analytical expansions for the components of the flow velocity are obtained by introducing a stream function ψ which satisfies the fourth-order partial differential equation E4ψ = 0. We assume nonslip conditions on the internal inverted spheroidal boundary which is also impermeable, while on the external spheroidal surface, we assume continuity of the tangential velocity component and nil vorticity. In order to solve the problem at hand, we employ the method of Kelvin inversion, under which, the initial problem, formulated in the inverted prolate spheroidal coordinates, is transformed to an equivalent one in the prolate spheroidal coordinates, where the solution space of the equation E4ψ = 0 is already known from our previously published work. The solution for the original problem is obtained by using the inverse Kelvin transformation and the effect of this transform to the Stokes operator (Dassios, IMA J Appl Math 74:427-438, 2009). Finally, the analytical solution for the stream function ψ is given through a series expansion of specific combinations of Gegenbauer functions of mixed order, multiplied by the Euclidean distance on the first and on the third power, in a so-called R-separable form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Dassios G (2009) The Kelvin transformation in potential theory and Stokes flow. IMA J Appl Math 74:427–438

    Article  Google Scholar 

  • Dassios G, Hadjinicolaou M, Payatakes AC (1994) Generalized Eigenfunctions and complete semiseparable solutions for Stokes flow in spheroidal coordinates. Q Appl Math LII(I):157–191

    Article  Google Scholar 

  • Dassios G, Hadjinicolaou M, Coutelieris FA, Payatakes AC (1995) Stokes flow in spheroidal particle in cell models with Happel and Kuwabara boundary conditions. Int J Eng Sci 33:1465–1490

    Article  Google Scholar 

  • Dassios G, Hadjinicolaou M, Protopapas E (2012) Blood plasma flow past a red blood cell: mathematical modelling and analytical treatment. Math Methods Appl Sci 35(13):1.547–1.563

    Article  Google Scholar 

  • Hadjinicolaou M, Kamvyssas G, Protopapas E (2015) Stokes flow applied to the sedimentation of a red blood cell. Q Appl Math 73:511–523. Online ISSN 1552-4485; Print ISSN 0033-569X, 2013

    Article  Google Scholar 

  • Happel J, Brenner H (1957) Viscous flow in multiparticle systems: motion of spheres and a fluid in a cylindrical tube. AICHE J 3(4):506–513

    Article  CAS  Google Scholar 

  • Happel J, Brenner H (1991) Low Reynolds number hydrodynamics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kuwabara S (1959a) The forces experienced by random distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14(4):527–532

    Google Scholar 

  • Lebedev NN (1972) Special Functions and Their Applications. Dover Publications

    Google Scholar 

  • Uchida S, Motai T (1954) Slow viscous flow through a mass of particles. Ind Eng Chem 46(6):1194–1195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hadjinicolaou .

Editor information

Editors and Affiliations

Appendix A Functions g2n

Appendix A Functions g2n

The functions g2n are

$$ {g}_2\left(\tau \right)={A}_2{G}_2\left(\tau \right)+{B}_2{H}_2\left(\tau \right)+{C}_2{G}_0\left(\tau \right)+{D}_2{G}_1\left(\tau \right)+{E}_2{G}_4\left(\tau \right)+{F}_2{H}_4\left(\tau \right) $$
(28)

and for n ≥ 2

$$ {\displaystyle \begin{array}{l}{g}_{2n}\left(\tau \right)={A}_{2n}{G}_{2n}\left(\tau \right)+{B}_{2n}{H}_{2n}\left(\tau \right)+{C}_{2n}{G}_{2n-2}\left(\tau \right)+{D}_{2n}{H}_{2n-2}\left(\tau \right)\\ {}\operatorname{}+{E}_{2n}{G}_{2n+2}\left(\tau \right)+{F}_2{H}_{2n+2}\left(\tau \right).\end{array}} $$
(29)

The coefficients An, Bn, Cn, Dn, En, and Fn are derived by applying the boundary conditions (16), (17), (18), and (19) and by geometrical reduction of the obtained stream function in the analogous form of the spherical system of coordinates. For instance, we have that

$$ {g}_2\left(\tau \right)=\frac{c^2}{D}\left[{\Lambda}_2{G}_2\left(\tau \right)+{\Lambda}_3\left(\frac{5{G}_4\left({\tau}_a\right)}{G_1\left({\tau}_a\right)}{G}_1\left(\tau \right)+{G}_4\left(\tau \right)\right)+{\Lambda}_4{H}_2\left(\tau \right)\right], $$
(30)
$$ {g}_4\left(\tau \right)=-\frac{c^2}{2D}{G}_2\left(\tau \right)+\frac{\Lambda_2^{(4)}{G}_6\left(\tau \right)+{M}_2^{(4)}{H}_6\left(\tau \right)+{\Lambda}_0^{(4)}{G}_4\left(\tau \right)+{M}_0^{(4)}{H}_4\left(\tau \right)}{D^{(4)}}. $$
(31)

The coefficients that we use to define the stream functions ψq(τʹ, ζʹ ) are presented in (32), (33), (34), (35), (36), (37), (38), (39), and (40) where the primes denote the first derivative of the functions.

$$ {\Lambda}_2={G}_4\left({\tau}_{\beta}\right){H}_2^{\prime}\left({\tau}_{\beta}\right)-{G}_4^{\prime}\left({\tau}_{\beta}\right){H}_2\left({\tau}_{\beta}\right)-\frac{5}{\tau_a}{G}_4\left({\tau}_a\right)\left[{H}_2\left({\tau}_{\beta}\right)-{\tau}_{\beta }{H}_2^{\prime}\left({\tau}_{\beta}\right)\right], $$
(32)
$$ {\Lambda}_3={G}_2^{\prime}\left({\tau}_{\beta}\right){H}_2\left({\tau}_{\beta}\right)-{G}_2\left({\tau}_{\beta}\right){H}_2^{\prime}\left({\tau}_{\beta}\right), $$
(33)
$$ {\Lambda}_4={G}_2\left({\tau}_{\beta}\right){G}_4^{\prime}\left({\tau}_{\beta}\right)-{G}_2^{\prime}\left({\tau}_{\beta}\right){G}_4\left({\tau}_{\beta}\right)+\frac{5}{\tau_a}{G}_4\left({\tau}_a\right)\left[{G}_2\left({\tau}_{\beta}\right)-{\tau}_{\beta }{G}_2^{\prime}\left({\tau}_{\beta}\right)\right], $$
(34)
$$ D=\frac{1}{2{G}_2\left({\tau}_a\right)}\left[{\Lambda}_2{G}_2\left({\tau}_a\right)+6{\Lambda}_3{G}_4\left({\tau}_a\right)+{\Lambda}_4{H}_2\left({\tau}_a\right)\right], $$
(35)
$$ {D}^{(4)}=\left|\begin{array}{cccc}{G}_6\left({\tau}_{\beta}\right)& {H}_6\left({\tau}_{\beta}\right)& {G}_4\left({\tau}_{\beta}\right)& {H}_4\left({\tau}_{\beta}\right)\\ {}{G}_6^{\prime}\left({\tau}_{\beta}\right)& {H}_6^{\prime}\left({\tau}_{\beta}\right)& {G}_4^{\prime}\left({\tau}_{\beta}\right)& {H}_4^{\prime}\left({\tau}_{\beta}\right)\\ {}{G}_6\left({\tau}_{\alpha}\right)& {H}_6\left({\tau}_{\alpha}\right)& {G}_4\left({\tau}_{\alpha}\right)& {H}_4\left({\tau}_{\alpha}\right)\\ {}30{G}_6\left({\tau}_{\alpha}\right)& 30{H}_6\left({\tau}_{\alpha}\right)& 12{G}_4\left({\tau}_{\alpha}\right)& 12{H}_4\left({\tau}_{\alpha}\right)\end{array}\right|, $$
(36)
$$ {\Lambda}_2^{(4)}=-\frac{c^2}{2D}\left|\begin{array}{cccc}{G}_2\left({\tau}_{\beta}\right)& {H}_6\left({\tau}_{\beta}\right)& {G}_4\left({\tau}_{\beta}\right)& {H}_4\left({\tau}_{\beta}\right)\\ {}{G}_6^{\prime}\left({\tau}_{\beta}\right)& {H}_6^{\prime}\left({\tau}_{\beta}\right)& {G}_4^{\prime}\left({\tau}_{\beta}\right)& {H}_4^{\prime}\left({\tau}_{\beta}\right)\\ {}{G}_2\left({\tau}_{\alpha}\right)& {H}_6\left({\tau}_{\alpha}\right)& {G}_4\left({\tau}_{\alpha}\right)& {H}_4\left({\tau}_{\alpha}\right)\\ {}2{G}_2\left({\tau}_{\alpha}\right)& 30{H}_6\left({\tau}_{\alpha}\right)& 12{G}_4\left({\tau}_{\alpha}\right)& 12{H}_4\left({\tau}_{\alpha}\right)\end{array}\right|, $$
(37)
$$ {M}_2^{(4)}=-\frac{c^2}{2D}\left|\begin{array}{cccc}{G}_6\left({\tau}_{\beta}\right)& {G}_2\left({\tau}_{\beta}\right)& {G}_4\left({\tau}_{\beta}\right)& {H}_4\left({\tau}_{\beta}\right)\\ {}{G}_6^{\prime}\left({\tau}_{\beta}\right)& {G}_2^{\prime}\left({\tau}_{\beta}\right)& {G}_4^{\prime}\left({\tau}_{\beta}\right)& {H}_4^{\prime}\left({\tau}_{\beta}\right)\\ {}{G}_6\left({\tau}_{\alpha}\right)& {G}_2\left({\tau}_{\alpha}\right)& {G}_4\left({\tau}_{\alpha}\right)& {H}_4\left({\tau}_{\alpha}\right)\\ {}30{G}_6\left({\tau}_{\alpha}\right)& 2{G}_2\left({\tau}_{\alpha}\right)& 12{G}_4\left({\tau}_{\alpha}\right)& 12{H}_4\left({\tau}_{\alpha}\right)\end{array}\right|, $$
(38)
$$ {\Lambda}_0^{(4)}=-\frac{c^2}{2D}\left|\begin{array}{cccc}{G}_6\left({\tau}_{\beta}\right)& {H}_6\left({\tau}_{\beta}\right)& {G}_2\left({\tau}_{\beta}\right)& {H}_4\left({\tau}_{\beta}\right)\\ {}{G}_6^{\prime}\left({\tau}_{\beta}\right)& {H}_6^{\prime}\left({\tau}_{\beta}\right)& {G}_2^{\prime}\left({\tau}_{\beta}\right)& {H}_4^{\prime}\left({\tau}_{\beta}\right)\\ {}{G}_6\left({\tau}_{\alpha}\right)& {H}_6\left({\tau}_{\alpha}\right)& {G}_2\left({\tau}_{\alpha}\right)& {H}_4\left({\tau}_{\alpha}\right)\\ {}30{G}_6\left({\tau}_{\alpha}\right)& 30{H}_6\left({\tau}_{\alpha}\right)& 2{G}_2\left({\tau}_{\alpha}\right)& 12{H}_4\left({\tau}_{\alpha}\right)\end{array}\right|, $$
(39)
$$ {M}_0^{(4)}=-\frac{c^2}{2D}\left|\begin{array}{cccc}{G}_6\left({\tau}_{\beta}\right)& {H}_6\left({\tau}_{\beta}\right)& {G}_4\left({\tau}_{\beta}\right)& {G}_2\left({\tau}_{\beta}\right)\\ {}{G}_6^{\prime}\left({\tau}_{\beta}\right)& {H}_6^{\prime}\left({\tau}_{\beta}\right)& {G}_4^{\prime}\left({\tau}_{\beta}\right)& {G}_2^{\prime}\left({\tau}_{\beta}\right)\\ {}{G}_6\left({\tau}_{\alpha}\right)& {H}_6\left({\tau}_{\alpha}\right)& {G}_4\left({\tau}_{\alpha}\right)& {G}_2\left({\tau}_{\alpha}\right)\\ {}30{G}_6\left({\tau}_{\alpha}\right)& 30{H}_6\left({\tau}_{\alpha}\right)& 12{G}_4\left({\tau}_{\alpha}\right)& 2{G}_2\left({\tau}_{\alpha}\right)\end{array}\right|. $$
(40)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hadjinicolaou, M., Protopapas, E. (2020). A Microscale Mathematical Blood Flow Model for Understanding Cardiovascular Diseases. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_35

Download citation

Publish with us

Policies and ethics