Skip to main content

Modeling the Critical Activation of Chaperone Machinery in Protein Folding

  • Conference paper
  • First Online:
GeNeDis 2018

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1194))

  • 1497 Accesses

Abstract

Protein homeostasis is a dynamic network that plays a pivotal role in systems’ maintenance within a cell. This quality control system involves a number of mechanisms regarding the process of protein folding. Chaperones play a critical role in the folding, refolding, and unfolding of proteins. Aggregation of misfolded proteins is a common characteristic of neurodegenerative diseases. Chaperones act in a variety of pathways in this critical interplay between protein homeostasis network and misfolded protein’s load. Moreover, ER stress-induced cell death mechanisms (such as the unfolded protein response) are activated as a response. Therefore, there is a critical balance in the accumulation of misfolded proteins and ER stress response mechanisms which can lead to cell death. Our focus is in understanding the different mechanisms that govern ER stress signaling in health and disease in order to represent the regulation of protein homeostasis and balance of protein synthesis and degradation in the ER. Our proposed model describes, using hybrid modeling, the function of chaperones’ machinery for protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3(1):a007526

    PubMed  PubMed Central  Google Scholar 

  • Arias E, Cuervo AM (2011) Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 23(2):184–189

    CAS  PubMed  Google Scholar 

  • Berger P, Niemann A, Suter U (2006) Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (charcot-marie-tooth disease). Glia 54(4):243–257

    PubMed  Google Scholar 

  • Borges JC, Ramos CH (2005) Protein folding assisted by chaperones. Protein Pept Lett 12(3):257–261

    CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The hsp70 and hsp60 chaperone machines. Cell 92(3):351–366

    CAS  PubMed  Google Scholar 

  • David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C (2010) Widespread protein aggregation as an inherent part of aging in c. elegans. PLoS Biol 8(8):e1000450

    PubMed  PubMed Central  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890

    CAS  PubMed  Google Scholar 

  • Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190(5):719–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eungdamrong NJ, Iyengar R (2004) Modeling cell signaling networks. Biol Cell 96(5):355–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francke C, Siezen RJ, Teusink B (2005) Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 13(11):550–558

    CAS  PubMed  Google Scholar 

  • Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580(12):2910–2916

    CAS  PubMed  Google Scholar 

  • Fromentin J, Eveillard D, Roux O (2010) Hybrid modeling of biological networks: mixing temporal and qualitative biological properties. BMC Syst Biol 4(79). https://doi.org/10.1186/1752-0509-4-79

  • Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. International journal of cell biology 2010:1

    Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    CAS  PubMed  Google Scholar 

  • Hessling M, Richter K, Buchner J (2009) Dissection of the atp-induced conformational cycle of the molecular chaperone hsp90. Nat Struct Mol Biol 16(3):287

    CAS  PubMed  Google Scholar 

  • Hines KE, Middendorf TR, Aldrich RW (2014) Determination of parameter identifiability in nonlinear biophysical models: a bayesian approach. J Gen Physiol 143(3):401–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong DS, Banerji U, Tavana B, George GC, Aaron J, Kurzrock R (2013) Targeting the molecular chaperone heat shock protein 90 (hsp90): lessons learned and future directions. Cancer Treat Rev 39(4):375–387

    CAS  PubMed  Google Scholar 

  • Hoter A, El-Sabban M, Naim H (2018) The hsp90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19(9):2560

    PubMed Central  Google Scholar 

  • Houry WA (2014) The molecular chaperones interaction networks in protein folding and degradation. Springer-Verlag, New York

    Google Scholar 

  • Isaacs JS (2016) Chapter five: Hsp90 as a “chaperone” of the epigenome: insights and opportunities for cancer therapy. Adv Cancer Res 129:107–140

    CAS  PubMed  Google Scholar 

  • Jha S (2009) Molecular biology of protein folding, vol 84. Academic Press, San Diego, United States

    Google Scholar 

  • Koo EH, Lansbury PT, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci 96(18):9989–9990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM (2017) The hsp70/hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254. https://doi.org/10.3389/fnins.2017.00254. URL https://www.frontiersin.org/article/10.3389/fnins.2017.00254

    Article  PubMed  PubMed Central  Google Scholar 

  • Leak RK (2014) Heat shock proteins in neurodegenerative disorders and aging. Journal of cell communication and signaling 8(4):293–310

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Srivastava P (2004) Heat-shock proteins current protocols in immunology/edited by john e coligan [et al.]

    Google Scholar 

  • Li J, Soroka J, Buchner J (2012) The hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823(3):624–635

    CAS  PubMed  Google Scholar 

  • Lindholm D, Wootz H, Korhonen L (2006) Er stress and neurodegenerative diseases. Cell Death Differentiation 13(3):385–392

    CAS  PubMed  Google Scholar 

  • Manié SN, Lebeau J, Chevet E (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Phys Cell Phys 307(10):C901–C907

    Google Scholar 

  • Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T (2009) The large conformational changes of hsp90 are only weakly coupled to atp hydrolysis. Nat Struct Mol Biol 16(3):281

    CAS  PubMed  Google Scholar 

  • Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22(5):482–487. https://doi.org/10.1016/j.semcdb.2011.04.002

  • Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in caenorhabditis elegans. Proc Natl Acad Sci 99(16):10417–10422

    PubMed  PubMed Central  Google Scholar 

  • Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78

    CAS  PubMed  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein hspl04. Nature 372(6505):475–478

    CAS  PubMed  Google Scholar 

  • Pereira CM (2013) Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. ISRN Cell Biol 2013:1

    Google Scholar 

  • Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD (2016) The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front Cell Dev Biol 3:80

    PubMed  PubMed Central  Google Scholar 

  • Pincus D, Aranda-Díaz A, Zuleta IA, Walter P, El-Samad H (2014) Delayed ras/pka signaling augments the unfolded protein response. Proc Natl Acad Sci 111(41):14800–14805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Planté-Bordeneuve V, Said G (2011) Familial amyloid polyneuropathy. The Lancet Neurology 10(12):1086–1097

    PubMed  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228(2):111–133

    CAS  Google Scholar 

  • Prodromou C (2016) Mechanisms of hsp90 regulation. Biochem J 473(16):2439–2452

    CAS  PubMed  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl:S10–S17

    PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J (2009) Er stress in alzheimer’s disease: a novel neuronal trigger for inflammation and alzheimer’s pathology. J Neuroinflammation 6(1):1

    Google Scholar 

  • Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    PubMed  Google Scholar 

  • Sharma SK, Christen P, Goloubinoff P (2009) Disaggregating chaperones: an unfolding story. Current Protein and Peptide Science 10(5):432–446

    CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2008) Extracellular hsp90: conquering the cell surface. Cell Cycle 7(11):1564–1568

    CAS  PubMed  Google Scholar 

  • Söti C, Csermely P (2002) Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem Int 41(6):383–389

    PubMed  Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49

    CAS  PubMed  Google Scholar 

  • Stéphanou A, Volpert V (2016) Hybrid modelling in biology: a classification review. Mathematical Modelling of Natural Phenomena 11(1):37–48

    Google Scholar 

  • Swan CL, Sistonen L (2015) Cellular stress response cross talk maintains protein and energy homeostasis. The EMBO journal p. In: e201490757

    Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiroli-Cepeda O (2011) A., HI Ramos, C.: an overview of the role of molecular chaperones in protein homeostasis. Protein Pept Lett 18(2):101–109

    CAS  PubMed  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic hsp90 complex in cancer. Nat Rev Cancer 10(8):537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–788

    CAS  PubMed  Google Scholar 

  • Verbeke P, Fonager J, Clark BF, Rattan SI (2001) Heat shock response and ageing: mechanisms and applications. Cell Biol Int 25(9):845–857

    CAS  PubMed  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones—cellular machines for protein folding. Angew Chem Int Ed 41(7):1098–1113

    CAS  Google Scholar 

  • Wood J, Beaujeux T, Shaw P (2003) Protein aggregation in motor neuron disorders. Neuropathol Appl Neurobiol 29(6):529–545

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Theocharopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theocharopoulou, G., Vlamos, P. (2020). Modeling the Critical Activation of Chaperone Machinery in Protein Folding. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_33

Download citation

Publish with us

Policies and ethics