Skip to main content

A Systems Biology Approach for the Identification of Active Molecular Pathways During the Progression of Alzheimer’s Disease

  • Conference paper
  • First Online:
GeNeDis 2018

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albasanz JL, Dalfó E, Ferrer I, Martín M (2005) Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis 20(3):685–693

    Article  CAS  Google Scholar 

  • Alcaraz N, List M, Batra R, Vandin F, Ditzel HJ, Baumbach J (2017) De novo pathway-based biomarker identification. Nucleic Acids Res 45(16):e151; Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651

    Google Scholar 

  • Alzheimer’s Association (2017) “2017 Alzheimer’s disease facts and figures”

    Google Scholar 

  • Caldera M, Buphamalai P, Müller F, Menche J (2017) Interactome-based approaches to human disease. Curr Opin Syst Biol 3:88

    Article  Google Scholar 

  • DiLuca M, Olesen J (2014) The cost of brain diseases: a burden or a challenge? Neuron 82(6):1205–1208

    Article  CAS  Google Scholar 

  • Dimitrakopoulos GN, Balomenos P, Vrahatis AG, Sgarbas K, Bezerianos A (2016) Identifying disease network perturbations through regression on gene expression and pathway topology analysis. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE, pp 5969–5972

    Google Scholar 

  • Dragomir A, Vrahatis A, Bezerianos A (2018) A network-based perspective in Alzheimer’s disease: current state and an integrative framework. IEEE J Biomed Health Inform

    Google Scholar 

  • Forster S, Grimmer T, Miederer I et al (2012) Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 71:792–797

    Article  Google Scholar 

  • García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E (2015) Pathway analysis: state of the art. Frontiers in physiology 6:383

    Google Scholar 

  • Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97(3):395–406

    Article  CAS  Google Scholar 

  • Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai LH, Kellis M (2015) Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518:365–369

    Article  CAS  Google Scholar 

  • Haynes WA et al (2013) Differential expression analysis for pathways. PLoS Comput Biol 9(3):e1002967

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44

    Article  Google Scholar 

  • Jack CR Jr, Vemuri P, Wiste HJ et al (2011) Evidence for ordering of Alzheimer disease biomarkers. Arch Neurol 68(12):1526–1535

    Article  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  CAS  Google Scholar 

  • Judeh T et al (2013) TEAK: topology enrichment analysis framework for detecting activated biological subpathways. Nucleic Acids Res 41:1425–1437

    Article  CAS  Google Scholar 

  • Lambert JC, Grenier-Boley B, Chouraki V, Heath S, Zelenika D, Fievet N et al (2010) Implication of the immune system in Alzheimer’s disease: evidence from genome-wide pathway analysis. J Alzheimers Dis 20(4):1107–1118

    Article  CAS  Google Scholar 

  • Li C et al (2013) Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways. Nucleic Acids Res 41(9):e101

    Article  CAS  Google Scholar 

  • Li X, Li C, Shang D, Li J, Han J, Miao Y, … Zhang Y (2011) The implications of relationships between human diseases and metabolic subpathways. PloS one 6(6):e21131

    Google Scholar 

  • Lun AT, Chen Y, Smyth GK (2016) It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. In: Statistical genomics. Humana Press, New York, pp 391–416

    Chapter  Google Scholar 

  • Martini P et al (2014) timeClip: pathway analysis for time course data without replicates. BMC Bioinformatics 15(5):1–10

    Google Scholar 

  • Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21(2):366–380

    Article  CAS  Google Scholar 

  • Nam S, Chang HR, Kim KT, Kook MC, Hong D, Kwon C et al (2014) PATHOME: an algorithm for accurately detecting differentially expressed subpathways. Oncogene 33(41):4941–4951

    Article  CAS  Google Scholar 

  • Oulas A, Minadakis G, Zachariou M, Sokratous K, Bourdakou MM, Spyrou GM (2019) Systems bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief Bioinform 20(3):806–824

    Article  CAS  Google Scholar 

  • Palsson BØ (2015) Systems biology: constraint-based reconstruction and analysis. Cambridge University Press. pathways. Nucleic Acids Res 41:e101

    Google Scholar 

  • Pons P, Latapy M (2006) Computing communities in large networks using random walks. J Graph Algorithms Appl 10(2):191–218

    Article  Google Scholar 

  • Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312

    Article  CAS  Google Scholar 

  • Ramanan VK, Kim S, Holohan K, Shen L, Nho K, Risacher SL et al (2012) Genome-wide pathway analysis of memory impairment in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks. Brain Imaging Behav 6(4):634–648

    Article  Google Scholar 

  • Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651

    Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  Google Scholar 

  • Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 8(6):1006–1016

    Article  CAS  Google Scholar 

  • Sales G, Calura E, Martini P, Romualdi C (2013) Graphite Web: Web tool for gene set analysis exploiting pathway topology. Nucleic acids research 41(W1):W89–W97

    Google Scholar 

  • Sebastian-Leon P, Vidal E, Minguez P, Conesa A, Tarazona S, Amadoz A et al (2014) Understanding disease mechanisms with models of signaling pathway activities. BMC Syst Biol 8(1):121

    Article  Google Scholar 

  • Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinf 14(1):91

    Article  Google Scholar 

  • Soneson C, Robinson MD (2018) Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods 15(4):255

    Article  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  Google Scholar 

  • Voyle N, Keohane A, Newhouse S, Lunnon K, Johnston C, Soininen H et al (2016) A pathway based classification method for analyzing gene expression for Alzheimer’s disease diagnosis. J Alzheimers Dis 49(3):659–669

    Article  CAS  Google Scholar 

  • Vradenburg G (2015) A pivotal moment in Alzheimer’s disease and dementia: how global unity of purpose and action can beat the disease by 2025. Expert Rev Neurother 15(1):73–82

    Article  CAS  Google Scholar 

  • Vrahatis AG, Dimitrakopoulou K, Balomenos P, Tsakalidis AK, Bezerianos A (2015a) CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis. Bioinformatics 32(6):884–892. 68:1526–1535

    Article  Google Scholar 

  • Vrahatis AG, Dimitrakopoulos GN, Tsakalidis AK, Bezerianos A (2015b) Identifying miRNA-mediated signaling subpathways by integrating paired miRNA/mRNA expression data with pathway topology. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (pp. 3997–4000). IEEE

    Google Scholar 

  • Vrahatis AG, Balomenos P, Tsakalidis AK, Bezerianos A (2016) DEsubs: an R package for flexible identification of differentially expressed subpathways using RNA-seq experiments. Bioinformatics 32(24):3844–3846

    Article  CAS  Google Scholar 

  • Vrahatis AG, Dimitrakopoulou K, Kanavos A, Sioutas S, Tsakalidis A (2017) Detecting perturbed subpathways towards mouse lung regeneration following H1N1 influenza infection. Computation 5(2):20

    Article  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al (2004) Regulation of an ATG7 -beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis G. Vrahatis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vrahatis, A.G., Kotsireas, I.S., Vlamos, P. (2020). A Systems Biology Approach for the Identification of Active Molecular Pathways During the Progression of Alzheimer’s Disease. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_28

Download citation

Publish with us

Policies and ethics