Skip to main content

A Survey of Evolutionary Games in Biology

  • Conference paper
  • First Online:
GeNeDis 2018

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1194))

Abstract

The applications of game theory in biology are numerous and include the comparison and modeling situations between bacteria, viruses, etc. This work provides insights about the connection between biology and evolving populations with classical and quantum evolutionary game theory and explains the benefits of unconventional computing methods in the study of such phenomena. In particular, the introduction of automata brings new possibilities into the decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu D, Rubinstein A (1988) The structure of nash equilibrium in repeated games with nite automata. Econometrica J Economet Soc 56:1259–1281

    Google Scholar 

  • Adamatzky A (2010) Game of life cellular automata, vol 1. Springer, London

    Google Scholar 

  • Alonso-Sanz R (2012) A quantum battle of the sexes cellular automaton. Proc R Soc A. https://doi.org/10.1098/rspa20120161

  • Alonso-Sanz R (2014) A quantum prisoner’s dilemma cellular automaton. Proc R Soc A 470(2164):2013.0793

    Google Scholar 

  • Anderson AR (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22(2):163–186

    PubMed  Google Scholar 

  • Andronikos T, Sirokofskich A, Kastampolidou K, Varvouzou M, Giannakis K, Singh A (2018) Finite automata capturing winning sequences for all possible variants of the pq penny ip game. Mathematics 6(2):20

    Google Scholar 

  • Aumann RJ (1981) Survey of repeated games. Essays in game theory and mathematical economics in honor of Oskar Morgenstern

    Google Scholar 

  • Axelrod R (1980) Effective choice in the prisoner’s dilemma. J Conflict Resol 24(1):3–25

    Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211(4489):1390–1396

    CAS  PubMed  Google Scholar 

  • Binmore KG, Samuelson L (1992) Evolutionary stability in repeated games played by nite automata. J Econ Theory 57(2):278–305

    Google Scholar 

  • Bomze IM (1983) Lotka-volterra equation and replicator dynamics: a two-dimensional classification. Biol Cybern 48(3):201–211

    Google Scholar 

  • Broom M, Rychtar J (2013) Game-theoretical models in biology. CRC Press, UK

    Google Scholar 

  • Conway J (1970) The game of life. Sci Am 223(4):4

    Google Scholar 

  • Craig JL (1984) Are communal pukeko caught in the prisoner’s dilemma? Behav Ecol Sociobiol 14(2):147–150

    Google Scholar 

  • Cressman R (2013) The stability concept of evolutionary game theory: a dynamic approach, vol 94. Springer Science & Business Media, Verlag, Berlin, Heidelberg

    Google Scholar 

  • Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. Springer, BirkhÅ©ser Boston

    Google Scholar 

  • Duchting W, Vogelsaenger T (1984) Analysis, forecasting, and control of three-dimensional tumor growth and treatment. J Med Syst 8(5):461–475

    CAS  PubMed  Google Scholar 

  • Eisert J, Wilkens M, Lewenstein M (1999) Quantum games and quantum strategies. Phys Rev Lett 83(15):3077

    CAS  Google Scholar 

  • Esteban PG, Rodrguez-Paton A (2011) Simulating a rock-scissors-paper bacterial game with a discrete cellular automaton. In: International work-conference on the interplay between natural and artificial computation, Springer, pp 363–370

    Google Scholar 

  • Feynman RP (1986) Quantum mechanical computers. Found Phys 16(6):507–531

    Google Scholar 

  • Flood MM (1958) Some experimental games. Manag Sci 5(1):5–26

    Google Scholar 

  • Gatenby RA, Vincent TL (2003) Application of quantitative models from population biology and evolutionary game theory to tumor therapeutic strategies. Mol Cancer Ther 2(9):919–927

    CAS  PubMed  Google Scholar 

  • Gerlee P, Anderson AR (2007) An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol 246(4):583–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogonea V, Merz KM (1999) Fully quantum mechanical description of proteins in solution. Combining linear scaling quantum mechanical methodologies with the poisson-boltzmann equation. Chem A Eur J 103(26):5171–5188

    CAS  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156(3774):477–488

    CAS  PubMed  Google Scholar 

  • Hammerstein P, Selten R (1994) Game theory and evolutionary biology. Handbook of game theory with economic applications, vol 2. Elsevier, North Holland, pp 929–993

    Google Scholar 

  • Hidalgo EG (2006) Quantum replicator dynamics. Physica A: statistical mechanics and its applications 369(2):393{407

    Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press

    Google Scholar 

  • Huberman BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci 90(16):7716–7718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal A, Toor A (2001a) Entanglement and dynamic stability of nash equilibria in a symmetric quantum game. Phys Lett A 286(4):245–250

    CAS  Google Scholar 

  • Iqbal A, Toor A (2001b) Equilibria of replicator dynamics in quantum games. arXiv preprint quant-ph/0106135

    Google Scholar 

  • Iqbal A, Toor A (2001c) Evolutionarily stable strategies in quantum games. Phys Lett A 280(5–6):249–256

    CAS  Google Scholar 

  • Iqbal A, Toor A (2002a) Darwinism in quantum systems? Phys Lett A 294(5–6):261–270

    CAS  Google Scholar 

  • Iqbal A, Toor A (2002b) Quantum repeated games. Phys Lett A 300(6):541–546

    CAS  Google Scholar 

  • Iqbal A, Toor A (2004) Stability of mixed nash equilibria in symmetric quantum games. Commun Theor Phys 42(3):335

    Google Scholar 

  • Kay R, Johnson NF, Benjamin SC (2001) Evolutionary quantum game. J Phys A Math Gen 34(41):L547

    Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJ (2002) Local dispersal promotes bio-diversity in a real-life game of rock–paper–scissors. Nature 418(6894):171

    CAS  PubMed  Google Scholar 

  • Komarova NL, Sengupta A, Nowak MA (2003) Mutation–selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theor Biol 223(4):433–450

    CAS  PubMed  Google Scholar 

  • Leung ML (2011) Classical vs quantum games: continuous-time evolutionary strategy dynamics. arXiv preprint arXiv:1104.3953

    Google Scholar 

  • Lewontin RC (1961) Evolution and the theory of games. J Theor Biol 1(3):382–403

    CAS  PubMed  Google Scholar 

  • Majumdar S, Pal S (2017) Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. J Cell Commun Signal 11(3):281–284

    PubMed  PubMed Central  Google Scholar 

  • Mansury Y, Diggory M, Deisboeck TS (2006) Evolutionary game theory in an agent-based brain tumor model: exploring the genotype–phenotypelink. J Theor Biol 238(1):146–156

    PubMed  Google Scholar 

  • Martínez GJ, Adamatzky A, Morita K, Margenstern M (2010) Computation with competing patterns in life-like automaton. In: Game of life cellular automata. Springer, London, pp. 547–572

    Google Scholar 

  • Miller JH (1996) The coevolution of automata in the repeated prisoner’s dilemma. J Econ Behav Organ 29(1):87–112

    Google Scholar 

  • Myerson RB (1999) Nash equilibrium and the history of economic theory. J Econ Lit 37(3):1067–1082

    Google Scholar 

  • Nash J (1951) Non-cooperative games. Ann Math 54:286–295

    Google Scholar 

  • Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359(6398):826

    Google Scholar 

  • Ogryzko V (2008) On two quantum approaches to adaptive mutations in bacteria. arXiv preprint arXiv:0805.4316

    Google Scholar 

  • Patel AA, Gawlinski ET, Lemieux SK, Gatenby RA (2001) A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J Theor Biol 213(3):315–331

    CAS  PubMed  Google Scholar 

  • Rendell P (2016) Turing machine in Conway game of life. In: Designing beauty: the art of cellular automata. Springer, Cham, pp 149–154

    Google Scholar 

  • Rubinstein A (1986) Finite automata play the repeated prisoner’s dilemma. J Econ Theory 39(1):83–96

    Google Scholar 

  • Smith MJ (1982) Evolution and the theory of games. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15

    Google Scholar 

  • Szabo G, Töke C (1998) Evolutionary prisoners dilemma game on a square lattice. Phys Rev E 58(1):69

    CAS  Google Scholar 

  • Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40(1–2):145–156

    Google Scholar 

  • Turner PE, Chao L (1999) Prisoner’s dilemma in an rna virus. Nature 398(6726):441

    CAS  PubMed  Google Scholar 

  • Von Neumann J, Burks AW et al (1966) Theory of self-reproducing automata. IEEE Trans Neural Netw 5(1):3–14

    Google Scholar 

  • Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior, pp 8–31, (1947) Princeton University Press, Princeton

    Google Scholar 

  • Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6(2):125–134

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Andronikos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kastampolidou, K., Andronikos, T. (2020). A Survey of Evolutionary Games in Biology. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_23

Download citation

Publish with us

Policies and ethics