Skip to main content

Particular Biomolecular Processes as Computing Paradigms

  • Conference paper
  • First Online:
GeNeDis 2018

Abstract

The research on alternative computation paradigms has been initiated mainly because of the apparent limits induced by the nature of the materials and the methods used in current computing technologies. Due to the above observation, various bio-inspired computing methods have already been proposed and studied, both in practice and theory. In this paper, a review of such models is outlined with emphasis on biomolecular forms of computing. In addition, a novel biomolecular model of computation based on P systems is proposed inspired by the structure of mitochondria, namely, the mitochondria P systems and automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 28 October 2020

    In the original version of this book, Chapter 20 was inadvertently published without carrying the corrections provided by the author. This has now been rectified in this revised version of the book.

References

  • Adamatzky A (2009) Developing proximity graphs by physarum polycephalum: does the plasmodium follow the toussaint hierarchy? Parallel Proc Lett 19(01):105–127

    Article  Google Scholar 

  • Adamatzky A (2018a) On discovering functions in actin filament automata. arXiv preprint arXiv 1807:06352

    Google Scholar 

  • Adamatzky A (2018b) Towards fungal computer. Interface Focus 8(6):20180029

    Article  Google Scholar 

  • Adamatzky A, Costello BDL, Asai T (2005) Reaction-diffusion computers. Elsevier Science Inc., New York

    Google Scholar 

  • Adleman LM et al (1994) Molecular computation of solutions to combinatorial problems. Science-AAAS-Weekly Paper Edition 266(5187):1021–1023

    CAS  Google Scholar 

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology. Garland Science, New York, NY, USA

    Google Scholar 

  • Amos M (2004) Cellular computing. Oxford University Press, New York, NY, USA

    Google Scholar 

  • Ballard DH (2015) Brain computation as hierarchical abstraction. MIT Press, Massachusetts, USA

    Google Scholar 

  • Calude C (2015) Unconventional computing: a brief subjective history. Technical report, Department of Computer Science, The University of Auckland, New Zealand

    Google Scholar 

  • de Castro LN (2007) Fundamentals of natural computing: an overview. Phys Life Rev 4(1):1–36

    Article  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176

    Article  CAS  Google Scholar 

  • Cheruku S, Păun A, Romero-Campero FJ, Pérez-Jiménez MJ, Ibarra OH (2007) Simulating fas-induced apoptosis by using p systems. Prog Nat Sci 17(4):424–431

    Article  CAS  Google Scholar 

  • Coleman V (2016) Embodied molecular computation: potential and challenges. Computer 49(9):43–51

    Article  Google Scholar 

  • Csuhaj-Varjú E (2010) P automata: concepts, results, and new aspects. In: Membrane computing. Springer, Berlin, Heidelberg, pp 1–15

    Google Scholar 

  • Csuhaj-Varjú E (2012) P and dp automata: unconventional versus classical automata. In: Developments in language theory. Springer, Berlin, Heidelberg, pp 7–22

    Google Scholar 

  • Csuhaj-Varjú E, Vaszil G (2003) P automata or purely communicating accepting P systems. In: Membrane computing. Springer, Berlin, Heidelberg, pp 219–233

    Google Scholar 

  • Csuhaj-Varjú E, Vaszil G (2008) (mem) brane automata. Theor Comput Sci 404(1):52–60

    Article  Google Scholar 

  • Czeizler E, Czeizler E, Kari L, Salomaa K (2009) On the descriptional complexity of Watson–crick automata. Theor Comput Sci 410(35):3250–3260

    Article  Google Scholar 

  • Demaine ED, Hendricks J, Olsen M, Patitz MJ, Rogers TA, Schabanel N, Seki S, Thomas H (2018) Know when to fold’em: self-assembly of shapes by folding in oritatami. In: International conference on DNA computing and molecular programming, Springer, Cham, pp 19–36

    Google Scholar 

  • Dittrich P (2005) Chemical computing. In: Unconventional programming paradigms. Springer, Berlin, Heidelberg, pp 19–32

    Google Scholar 

  • Dodig Crnkovic G, Burgin M (2012) Unconventional algorithms: complementarity of axiomatics and construction. Entropy 14(11):2066–2080

    Article  Google Scholar 

  • Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6):467–488

    Article  Google Scholar 

  • Gheorghe M, Manca V, Romero-Campero FJ (2010) Deterministic and stochastic P systems for modelling cellular processes. Natural Computing 9(2):457–473

    Google Scholar 

  • Giannakis K, Andronikos T (2015) Mitochondrial fusion through membrane automata. In: Vlamos P, Alexiou A (eds) GeNeDis 2014, advances in experimental medicine and biology, vol 820. Springer International Publishing, Cham, pp 163–172

    Google Scholar 

  • Giannakis K, Andronikos T (2017) Membrane automata for modeling biomolecular processes. Nat Comput 16(1):151–163. https://doi.org/10.1007/s11047-015-9518-1

    Article  CAS  Google Scholar 

  • Giannakis K, Singh A, Kastampolidou K, Papalitsas C, Andronikos T (2017) Qm automata: a new class of restricted quantum membrane automata. In: Vlamos P (ed) GeNeDis 2016. Springer International Publishing, Cham, pp 193–204

    Chapter  Google Scholar 

  • Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  CAS  Google Scholar 

  • Goñi-Moreno A, Redondo-Nieto M, Arroyo F, Castellanos J (2011) Biocircuit design through engineering bacterial logic gates. Nat Comput 10(1):119–127

    Article  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283(5407):1476–1481

    Article  CAS  Google Scholar 

  • Han YS, Kim H, Ota M, Seki S (2018) Nondeterministic seedless oritatami systems and hardness of testing their equivalence. Nat Comput 17(1):67–79

    Article  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54(1):1015–1069

    Article  CAS  Google Scholar 

  • Juba B (2016) Computational complexity and the brain. Closed-loop neuroscience. Academic Press, Cambridge, Massachusetts, USA

    Google Scholar 

  • Kari L, Rozenberg G (2008) The many facets of natural computing. Commun ACM 51(10):72–83

    Article  Google Scholar 

  • Landauer R (2018) Information is inevitably physical. In: Feynman and computation. CRC Press, Boca Raton, FL, USA, pp 77–92

    Google Scholar 

  • Lewis H, Papadimitriou CH (1997) Elements of the theory of computation, 2nd edn. Prentice-Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and samtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  • Longo DL, Archer SL (2013) Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369(23):2236–2251

    Article  Google Scholar 

  • Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149

    Article  Google Scholar 

  • Martın-Vide C, Păun G, Pazos J, Rodrıguez-Patón A (2003) Tissue P systems. Theor Comput Sci 296(2):295–326

    Article  Google Scholar 

  • McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a power-house. Curr Biol 16(14):R551–R560

    Article  CAS  Google Scholar 

  • Miller JF, Harding S, Tufte G (2014) Evolution in materio: evolving computation in materials. Springer, Berlin, Heidelberg

    Google Scholar 

  • Minsky ML (1967) Computation: finite and infinite machines. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  • Moore GE et al. (1975) Progress in digital integrated electronics. In: Electron devices meeting, vol. 21. IEEE, Washington, DC, pp 11–13

    Google Scholar 

  • von Neumann J (1958) The computer and the brain. Cybernetic Collection 1

    Google Scholar 

  • Nielsen MA, Chuang IL (2011) Quantum computation and quantum information: 10th anniversary edition, 10th edn. Cambridge University Press, New York

    Google Scholar 

  • Papadimitriou CH, Vempala SS (2015) Cortical computation. In: Proceedings of the 2015 ACM symposium on principles of distributed computing, pp 1–2

    Google Scholar 

  • Paun A, Paun G (2002) The power of communication: P systems with symport/antiport. N Gener Comput 20(3):295–305

    Article  Google Scholar 

  • Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  Google Scholar 

  • Păun G, Pérez-Jiménez MJ (2012) P automata revisited. Theor Comput Sci 454:222–230

    Article  Google Scholar 

  • Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrane computing. Oxford University Press, Inc., Oxford

    Book  Google Scholar 

  • Rabin MO, Scott D (1959) Finite automata and their decision problems. IBM J Res Dev 3(2):114–125

    Article  Google Scholar 

  • Romero-Campero FJ, Pérez-Jiménez MJ (2008) A model of the quorum sensing system in vibrio fischeri using p systems. Artif Life 14(1):95–109

    Article  Google Scholar 

  • Sipser M (2006) Introduction to the theory of computation, 2nd edn. Thomson Course Technology, Boston, Massachusetts, USA

    Google Scholar 

  • Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta (BBA) Bioenerg 1410(2):103–123

    Article  CAS  Google Scholar 

  • Theocharopoulou G, Giannakis K, Andronikos T (2015) The mechanism of splitting mitochondria in terms of membrane automata. In: 2015 IEEE international symposium on signal processing and information technology (ISSPIT). Abu Dhabi, United Arab Emirates, pp 397–402

    Google Scholar 

  • Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62(3):341–360

    Article  Google Scholar 

  • Turing AM (1937) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc 2(1):230–265

    Article  Google Scholar 

  • Waldrop MM (2016) The chips are down for moore’s law. Nature News 530(7589):144

    Article  CAS  Google Scholar 

  • Whiting JG, de Lacy Costello BP, Adamatzky A (2014) Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of physarum polycephalum. Sensors Actuators B Chem 191:844–853

    Article  CAS  Google Scholar 

  • Wiedermann J (2011) Nanomachine computing by quorum sensing. In: Computation, cooperation, and life. Springer, Berlin, Heidelberg, pp 203–215

    Google Scholar 

  • Wiesner RJ, Rüegg JC, Morano I (1992) Counting target molecules by exponential polymerase chain reaction: copy number of mitochondrial dna in rat tissues. Biochem Biophys Res Commun 183(2):553–559

    Article  CAS  Google Scholar 

  • Wolfram S (1984) Cellular automata as models of complexity. Nature 311(5985):419

    Article  Google Scholar 

  • Wu T, Pan L, Alhazov A (2018) Computation power of asynchronous spiking neural p systems with polarizations. Theor Comput Sci 777:474–489

    Google Scholar 

Download references

Acknowledgement

This work was supported in full by the project “Investigating alternative computational methods and their use in computational problems related to optimization and game theory,” (MIS 5007500) which is partially funded by European and National Greek Funds in the framework of “Supporting researchers with an emphasis on young researchers,” under the Operational Programme “Education & Lifelong Learning.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Giannakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giannakis, K., Theocharopoulou, G., Papalitsas, C., Fanarioti, S., Andronikos, T. (2020). Particular Biomolecular Processes as Computing Paradigms. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-32622-7_20

Download citation

Publish with us

Policies and ethics