Skip to main content

Pattern Match Query for Spatiotemporal RDF Graph

  • Conference paper
  • First Online:
  • 1287 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1075))

Abstract

RDF is the W3C standard, whose model is defined as a triple. RDF is designed to provide a common way of describing resource so that it can be read and understood by computer applications. In RDF model, the statement in the resource description may correspond to a natural language statement, the resource corresponds to the subject in the natural language, the attribute type corresponds to the predicate, and the attribute value corresponds to the object. Meanwhile, RDF information has temporal attribute and spatial attribute. But classical RDF model can’t show the spatial and temporal properties of resources. So, combining spatiotemporal information with RDF is necessary. However, SPARQL, the W3C-recommended query language of RDF, only meets the classic RDF query. This paper presents a novel representation model of spatiotemporal RDF. Based on this model, a Find Isomorphic Graphs of the Query Graph algorithm is introduced to obtain some candidate isomorphic graph of the query graph. Finally, we define the process of pattern matching.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and abstract syntax (2006)

    Google Scholar 

  2. Yan, Y., Wang, C., Zhou, A., et al.: Efficiently querying RDF data in triple stores. In: Proceedings of the 17th International Conference on World Wide Web, pp. 1053–1054. ACM (2008)

    Google Scholar 

  3. Chen, S.C., Shyu, M.L., Peeta, S., et al.: Learning-based spatio-temporal vehicle tracking and indexing for transportation multimedia database systems. IEEE Trans. Intell. Transp. Syst. 4(3), 154–167 (2003)

    Article  Google Scholar 

  4. Mennis, J.L., Fountain, A.G.: A spatio-temporal GIS database for monitoring alpine glacier change. Photogram. Eng. Remote Sens. 67(8), 967–974 (2001)

    Google Scholar 

  5. Antonić, O., Križanb, J., Marki, A., et al.: Spatio-temporal interpolation of climatic variables over large region of complex terrain using neural networks. Ecol. Model. 138(1–3), 255–263 (2001)

    Article  Google Scholar 

  6. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_29

    Chapter  Google Scholar 

  7. Perry, M., Sheth, A.P., Hakimpour, F., Jain, P.: Supporting complex thematic, spatial and temporal queries over semantic web data. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 228–246. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76876-0_15

    Chapter  Google Scholar 

  8. Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extending SPARQL to support spatiotemporal queries. In: Ashish, N., Sheth, A. (eds.) Geospatial Semantics and the Semantic Web. Semantic Web and Beyond (Computing for Human Experience), vol. 12, pp. 61–86. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-9446-2_3

    Chapter  Google Scholar 

  9. Zou, L., Mo, J.H., Chen, L., et al.: gStore: answering SPARQL queries via subgraph matching. Proc. VLDB Endow. 4(8), 482–493 (2011)

    Article  Google Scholar 

  10. Li, G.F., Yan, L., Ma, Z.M.: Pattern match query over fuzzy RDF graph. Knowl.-Based Syst. 165, 460–473 (2019)

    Article  Google Scholar 

  11. Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. Proc. VLDB Endow. 2(1), 886–897 (2009)

    Article  Google Scholar 

  12. Ma, Z.M., Li, G.F., Yan, L.: Fuzzy data modeling and algebraic operations in RDF. Fuzzy Sets Syst. 351, 41–63 (2018)

    Article  MathSciNet  Google Scholar 

  13. Wang, D., Zou, L., Zhao, D.Y.: gst-store: querying large spatiotemporal RDF graphs. Data Inf. Manag. 1(2), 84–103 (2017)

    Google Scholar 

  14. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19(2), 207–218 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (61402087), the Natural Science Foundation of Hebei Province (F2019501030), the Natural Science Foundation of Liaoning Province (2019-MS-130), and the Fundamental Research Funds for the Central Universities (N172304026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyi Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di, X., Wang, J., Cheng, S., Bai, L. (2020). Pattern Match Query for Spatiotemporal RDF Graph. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2019. Advances in Intelligent Systems and Computing, vol 1075. Springer, Cham. https://doi.org/10.1007/978-3-030-32591-6_57

Download citation

Publish with us

Policies and ethics