Advertisement

Efficient Algorithm for Maximal Biclique Enumeration on Bipartite Graphs

  • CaiXia QinEmail author
  • MingXue Liao
  • YuanYuan Liang
  • ChangWen Zheng
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1075)

Abstract

Maximal Biclique Enumeration (MBE) has become a central task to many data mining problems arising in Web mining, shopping recommendation, business and bioinformatics. It is crucial to accelerate the sequential MBE that is the basis of the parallel MBE. In this paper, we present an efficient algorithm for maximal biclique enumeration (EMBE) on bipartite graphs in a depth-first manner and need not to store previously computed maximal bicliques in memory for duplicate detection. Previous studies have shown that reduce the number of checking closure condition and manage the child nodes are huge challenges for generating all maximal bicliques. In this paper, we propose that (1) an efficient implementation for pruning technique based on the stack when checking nodes are closed or not, (2) a new method to manage the expansion child nodes through a global data structure.

Keywords

Maximal biclique enumeration Closed item sets Sequential algorithm Bipartite graph 

References

  1. 1.
    Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques. Discrete Appl. Math. 145(1), 11–21 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Rec. 26(2), 255–264 (1997)CrossRefGoogle Scholar
  3. 3.
    Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–160. ACM (2000)Google Scholar
  4. 4.
    Gély, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and bicliques. Discrete Appl. Math. 157(7), 1447–1459 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees. IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)CrossRefGoogle Scholar
  6. 6.
    Hashem, T., Karim, M.R., Samiullah, M., Ahmed, C.F.: An efficient dynamic superset bit-vector approach for mining frequent closed itemsets and their lattice structure. Expert Syst. Appl. 67, 252–271 (2017)CrossRefGoogle Scholar
  7. 7.
    Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent subgraphs from graph databases. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 581–586. ACM (2004)Google Scholar
  8. 8.
    Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs: mining graph data. Mach. Learn. 50(3), 321–354 (2003)CrossRefGoogle Scholar
  9. 9.
    Li, J., Liu, G., Li, H., Wong, L.: Maximal biclique subgraphs and closed pattern pairs of the adjacency matrix: a one-to-one correspondence and mining algorithms. IEEE Trans. Knowl. Data Eng. 19(12), 1625–1637 (2007)CrossRefGoogle Scholar
  10. 10.
    Malgrange, Y.: Recherche des sous-matrices premières d’une matrice à coefficients binaires. Applications à certains problèmes de graphe. In: Proceedings of the Deuxième Congrès de l’AFCALTI, pp. 231–242 (1962)Google Scholar
  11. 11.
    Mukherjee, A.P., Tirthapura, S.: Enumerating maximal bicliques from a large graph using mapreduce. IEEE Trans. Serv. Comput. 10(5), 771–784 (2017)CrossRefGoogle Scholar
  12. 12.
    Nagarajan, N., Kingsford, C.: Uncovering genomic reassortments among influenza strains by enumerating maximal bicliques. In: 2008 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2008, pp. 223–230. IEEE (2008)Google Scholar
  13. 13.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: International Conference on Database Theory, pp. 398–416. Springer (1999)Google Scholar
  14. 14.
    Pei, J., Han, J., Mao, R., et al.: CLOSET: an efficient algorithm for mining frequent closed itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, vol. 4, pp. 21–30 (2000)Google Scholar
  15. 15.
    Selvan, S., Nataraj, R.: Efficient mining of large maximal bicliques from 3D symmetric adjacency matrix. IEEE Trans. Knowl. Data Eng. 22(12), 1797–1802 (2010)CrossRefGoogle Scholar
  16. 16.
    Shin, K., Hooi, B., Faloutsos, C.: M-Zoom: fast dense-block detection in tensors with quality guarantees. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 264–280. Springer (2016)Google Scholar
  17. 17.
    Sinthuja, M., Puviarasan, N., Aruna, P.: Geo map visualization for frequent purchaser in online shopping database using an algorithm LP-growth for mining closed frequent itemsets. Procedia Comput. Sci. 132, 1512–1522 (2018)CrossRefGoogle Scholar
  18. 18.
    Uno, T., Asai, T., Uchida, Y., Arimura, H.: LCM: an efficient algorithm for enumerating frequent closed item sets. In: Fimi, vol. 90. Citeseer (2003)Google Scholar
  19. 19.
    Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In: Fimi, vol. 126 (2004)Google Scholar
  20. 20.
    Wang, J., Han, J., Pei, J.: CLOSET+: searching for the best strategies for mining frequent closed itemsets. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 236–245. ACM (2003)Google Scholar
  21. 21.
    Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 286–295. ACM (2003)Google Scholar
  22. 22.
    Zaki, M.J., Hsiao, C.J.: CHARM: an efficient algorithm for closed itemset mining. In: Proceedings of the 2002 SIAM International Conference on Data Mining, pp. 457–473. SIAM (2002)Google Scholar
  23. 23.
    Zhong-Ji, F., Ming-Xue, L., Xiao-Xin, H., Xiao-Hui, H., Xin, Z.: Efficient algorithm for extreme maximal biclique mining in cognitive frequency decision making. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 25–30. IEEE (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • CaiXia Qin
    • 1
    • 2
    Email author
  • MingXue Liao
    • 2
  • YuanYuan Liang
    • 2
  • ChangWen Zheng
    • 2
  1. 1.University of Chinese Academy of Sciences, UCASBeijingPeople’s Republic of China
  2. 2.Institute of SoftwareChinese Academy of Sciences, ISCASBeijingPeople’s Republic of China

Personalised recommendations