Skip to main content

Order Acceptance Policy for Make-To-Order Supply Chain

  • Chapter
  • First Online:
Data Management and Analysis

Part of the book series: Studies in Big Data ((SBD,volume 65))

Abstract

This paper explores a dynamic order acceptance policy of firms in a decentralized supply chain (SC) to improve the profits of an SC by using the machine learning method. The dynamic arrival and due date orders in SC were divided into three types according to the profit that the SC can obtain. Two echelons of the SC, in which a supplier that cooperate with other firms in SC will receive orders in and out of the SC, are employed in this study. Capturing four order characteristics in make-to-order SC, we examine whether this model can make a higher profit by using a simulation model of Support Vector Machines (SVMs) rather than First Come First Serve (FCFS) and Artificial Neural Network (ANN). The experimental results indicate that SVMs is an efficient tool for firms in a dynamic SC to improve the performance of the SC. A numerical example is used to validate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guerrero, H. H., & Kern, G. M. (1988). How to more effectively accept and refuse orders. Production and Inventory Management Journal, 29(4), 59.

    Google Scholar 

  2. Lee, C., Piramuthu, S., et al. (1997). Job shop scheduling with a genetic algorithm and machine learning. International Journal of Production Research, 35(4), 1171–1191.

    Article  MATH  Google Scholar 

  3. Zhao, W., & Stankovic, J. A. (1989). Performance analysis of FCFS and improved FCFS scheduling algorithms for dynamic real-time computer systems. In Proceedings. Real-time systems symposium (pp. 156–165). IEEE.

    Google Scholar 

  4. Wang, J., Yang, J., et al. (1994). Multicriteria order acceptance decision support in over-demanded job shops: A neural network approach. Mathematical and Computer Modelling, 19(5), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  5. Miller, B. L. (1969). A queueing reward system with several customer classes. Management Science, 16(3), 234–245.

    Article  MATH  Google Scholar 

  6. Holweg, M., & Bicheno, J. (2002). Supply chain simulation - a tool for education, enhancement and endeavour. International Journal of Production Economics, 78(2), 163–175.

    Article  Google Scholar 

  7. Lee, Y. H., Cho, M. K., et al. (2002). Supply chain simulation with discrete--continuous combined modeling. Computers & Industrial Engineering, 43(1), 375–392.

    Article  Google Scholar 

  8. Petrovic, D. (2001). Simulation of supply chain behaviour and performance in an uncertain environment. International Journal of Production Economics, 71(1), 429–438.

    Article  Google Scholar 

  9. Hans, A. (1994). Towards a better understanding of order acceptance. International Journal of Production Economics, 37(1), 139–152.

    Article  MathSciNet  Google Scholar 

  10. Ono, K., & Jones, C. (1973). A heuristic approach to acceptance rules in integrated scheduling systems. Journal of Operations Research Society of Japan, 16(1), 36–58.

    Google Scholar 

  11. Ten Kate, H. A. E. (1995). Order acceptance and production control. Princeton, NJ: Labyrint Publication.

    Google Scholar 

  12. Stern, H. I., & Avivi, Z. (1990). The selection and scheduling of textile orders with due dates. European Journal of Operational Research, 44(1), 11–16.

    Article  MATH  Google Scholar 

  13. Slotnick, S. A., & Morton, T. E. (2007). Order acceptance with weighted tardiness. Computers & Operations Research, 34(10), 3029–3042.

    Article  MATH  Google Scholar 

  14. Barut, M., & Sridharan, V. (2005). Revenue management in order-driven production systems. Decision Sciences, 36(2), 287–316.

    Article  Google Scholar 

  15. Ivanescu, C. V., Fransoo, J. C., et al. (2002). Makespan estimation and order acceptance in batch process industries when processing times are uncertain. OR Spectrum, 24(4), 467–495.

    Article  MATH  Google Scholar 

  16. Raaymakers, W. H., Bertrand, J. W. M., et al. (2000). Using aggregate estimation models for order acceptance in a decentralized production control structure for batch chemical manufacturing. IIE Transactions, 32(10), 989–998.

    Google Scholar 

  17. Lei, D., & Guo, X. (2015). A parallel neighborhood search for order acceptance and scheduling in flow shop environment. International Journal of Production Economics, 165, 12–18.

    Article  Google Scholar 

  18. Nobibon, F. T., & Leus, R. (2011). Exact algorithms for a generalization of the order acceptance and scheduling problem in a single-machine environment. Computers & Operations Research, 38(1), 367–378.

    Article  MathSciNet  MATH  Google Scholar 

  19. Charnsirisakskul, K., Griffin, P. M., et al. (2004). Order selection and scheduling with leadtime flexibility. IIE Transactions, 36(7), 697–707.

    Article  Google Scholar 

  20. Charnsirisakskul, K., Griffin, P. M., et al. (2006). Pricing and scheduling decisions with leadtime flexibility. European Journal of Operational Research, 171(1), 153–169.

    Article  MathSciNet  MATH  Google Scholar 

  21. Og, C., Salman, F. S., et al. (2010). Order acceptance and scheduling decisions in make-to-order systems. International Journal of Production Economics, 125(1), 200–211.

    Article  Google Scholar 

  22. Rom, W. O., & Slotnick, S. A. (2009). Order acceptance using genetic algorithms. Computers & Operations Research, 36(6), 1758–1767.

    Article  MATH  Google Scholar 

  23. Rahman, H. F., Sarker, R., et al. (2015). A real-time order acceptance and scheduling approach for permutation flow shop problems. European Journal of Operational Research, 247(2), 488–503.

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, C., Yang, Z., et al. (2014). Diversity controlling genetic algorithm for order acceptance and scheduling problem. Mathematical Problems in Engineering, 2014, 367152.

    MATH  Google Scholar 

  25. Park, J., Nguyen, S., et al. (2014). Enhancing heuristics for order acceptance and scheduling using genetic programming. In G. Dick et al. (Eds.), Simulated evolution and learning. SEAL 2014 (Lecture notes in computer science) (Vol. 8886, pp. 723–734). Cham: Springer.

    Chapter  Google Scholar 

  26. Wester, F., Wijngaard, J., et al. (1992). Order acceptance strategies in a production-to-order environment with setup times and due-dates. The International Journal of Production Research, 30(6), 1313–1326.

    Article  MATH  Google Scholar 

  27. Gordon, V. S., & Strusevich, V. A. (2009). Single machine scheduling and due date assignment with positionally dependent processing times. European Journal of Operational Research, 198(1), 57–62.

    Article  MathSciNet  MATH  Google Scholar 

  28. Moreira, M. R. A. R., & Alves, R. A. F. (2009). A methodology for planning and controlling workload in a job-shop: A four-way decision-making problem. International Journal of Production Research, 47(10), 2805–2821.

    Article  MATH  Google Scholar 

  29. Rogers, P., & Nandi, A. (2007). Judicious order acceptance and order release in make-to-order manufacturing systems. Production Planning & Control, 18(7), 610–625.

    Article  Google Scholar 

  30. Yang, W., & Fung, R. Y. (2014). Stochastic optimization model for order acceptance with multiple demand classes and uncertain demand/supply. Engineering Optimization, 46(6), 824–841.

    Article  MathSciNet  Google Scholar 

  31. Aouam, T., & Brahimi, N. (2013). Integrated production planning and order acceptance under uncertainty: A robust optimization approach. European Journal of Operational Research, 228(3), 504–515.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kilic, O. A., van Donk, D. P., et al. (2010). Order acceptance in food processing systems with random raw material requirements. OR Spectrum, 32(4), 905–925.

    Article  MathSciNet  MATH  Google Scholar 

  33. Boser, B. E., Guyon, I. M., et al. (1992). A training algorithm for optimal margin classifiers (pp. 144–152). New York: ACM.

    Google Scholar 

  34. Vapnik, V. (1995). The nature of statistical learning theory (pp. 15–24). New York: Springer.

    Book  MATH  Google Scholar 

  35. Vapnik, V. (2013). The nature of statistical learning theory (pp. 78–89). New York: Springer.

    Google Scholar 

  36. Amari, S., & Wu, S. (1999). Improving support vector machine classifiers by modifying kernel functions. Neural Networks, 12(6), 783–789.

    Article  Google Scholar 

  37. Carbonneau, R., Laframboise, K., et al. (2008). Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research, 184(3), 1140–1154.

    Article  MATH  Google Scholar 

  38. Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms (pp. 161–168). New York: ACM.

    Google Scholar 

  39. Meyer, D., Leisch, F., et al. (2003). The support vector machine under test. Neurocomputing, 55(1), 169–186.

    Article  Google Scholar 

  40. Nagurney, A., & Dong, J. (2002). Supernetworks: Decision-making for the information age (pp. 33–48). Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  41. Robinson, B., & Lakhani, C. (1975). Dynamic price models for new-product planning. Management Science, 21(10), 1113–1122.

    Article  MATH  Google Scholar 

  42. Zhang, D. (2006). A network economic model for supply chain versus supply chain competition. Omega, 34(3), 283–295.

    Article  Google Scholar 

  43. Chang, C., & Lin, C. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

    Google Scholar 

  44. Hsu, C., Chang, C., & Lin, C. (2003). A practical guide to support vector classification (Technical Report, pp. 1–12). Taipei: Department of Computer Science and Information Engineering, University of National Taiwan.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by a project grant from the Discovery Grant from the Natural Science and Engineering Research Council of Canada (NSERC) and the Humanities and Social Sciences of Ministry of Education Planning Fund (No: 16YJC630085) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiliu Tu .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 4 A partial list of test data
Table 5 A partial list of training data

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, J., Tu, Y., Feng, D. (2020). Order Acceptance Policy for Make-To-Order Supply Chain. In: Alhajj, R., Moshirpour, M., Far, B. (eds) Data Management and Analysis. Studies in Big Data, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-030-32587-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32587-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32586-2

  • Online ISBN: 978-3-030-32587-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics