Skip to main content

About Formation of Elements of a Cyber-Physical System for Efficient Throttling of Fluid in an Axial Valve

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 259))

Abstract

An example of the calculation of an axial valve separator, as one of the stages of the formation of elements of a cyber-physical system designed for the effective throttling of a fluid, is performed. The engineering methodology of the authors for calculating the design parameters of the axial valve with the external location of the locking part was chosen as the basis. When obtaining the results, the author’s models are used that describe hydrodynamic cavitation at its initial stage in a separator of an axial valve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kafarov, V.V., Dorokhov, I.N., Koltsova, E.M.: System analysis of chemical technology processes. In: Entropy and Variational Methods of Nonequilibrium Thermodynamics in Problems of Chemical Technology, 367 p. Science, Moscow, (1988)

    Google Scholar 

  2. Kapranova, A., Lebedev, A., Melzer, A., Neklyudov, S.: Determination of the average parameters of cavitation bubbles in the flowing part of the control valves. Int. J. Mech. Eng. Technol. (IJMET) 9(3), 25–31. Article ID: IJMET_09_03_003. Available online at http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=9&IType=3 (2018)

  3. Kapranova, A., Neklyudov, S., Lebedev, A., Melzer, A.: Investigation of the energy of the stochastic motion of cavitation bubbles in the separator of the axial valve, depending on the degree of its opening. Int. J. Mech. Eng. Technol. (IJMET) 9(8), 160–166. Article ID: IJMET_09_08_017. Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8 (2018)

  4. Kapranova, A., Neklyudov, S., Lebedev, A., Melzer, A.: Qualitative evaluation of the coefficient of hydraulic resistance in the area of the divider of the fluid flow of the axial valve. Int. J. Mech. Eng. Technol. (IJMET) 9(8), 153–159. Article ID: IJMET_09_08_016. Available online at http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8 (2018)

  5. Arzumanov, E.S.: Calculation and Selection of the Regulatory Bodies of Automatic systems, 112 p. Energy, Moscow, (1971)

    Google Scholar 

  6. Christmas, V.V.: Cavitation, 148 p. Shipbuilding, Leningrad (1977)

    Google Scholar 

  7. Volmer, V., Weber, A.: Keimbildung in uebersaetigen Daempfen. Z. Phys. Chem. (119), 277–301 (1926)

    Google Scholar 

  8. Lienhard, J.H., Karimi, A.: Homogeneous nucleation and the spinodal line. J. Heat Transf. 103(1), 61–64 (1981)

    Article  Google Scholar 

  9. Ellas, E., Chambre, P.L.: Bubble transport in flashing flow. Int J. Multiph. Flow (26), 191–206 (2000)

    Google Scholar 

  10. Kwak, H.-Y., Kim, Y.W.: Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions. Int. J. Heat Mass Transf. 41(4–5), 757–767 (1998)

    Article  Google Scholar 

  11. Kedrinskii, V.K.: Hydrodynamics of Explosion: Experiments and Models (Shock Wave and High Pressure Phenomena), Chap. 7, pp. 307–344. Springer, Berlin (2005)

    Google Scholar 

  12. Koch, S., Garen, W., Hegedűs, F., Neu, W., Reuter, R., Teubner, U.: Time-resolved measurements of shock induced cavitation bubbles in liquids. Appl. Phys. 108, 345–351 (2012)

    Article  Google Scholar 

  13. Shin, T.S., Jones, O.C.: Nucleation and flashing in nozzles-1. A distributed nucleation model. Int. J. Multiph. Flow. 19(6), 943–964 (1993)

    Article  Google Scholar 

  14. Hsu, Y.Y.: On the size range of active nucleation cavities on a heating surface. J. Heat Transf. 94, 207–212 (1962)

    Article  Google Scholar 

  15. Kumzerova. E.Yu., Schmidt, A.A.: Effect of bubble nucleation mechanisms on flashing flow structure (numerical simulation). Comput. Fluid Dyn. 11(4), 507–512 (2003)

    Google Scholar 

  16. Petrov, N., Schmidt, A.: Effect of a bubble nucleation model on cavitating flow structure in rarefaction wave. Shock Waves. 27(4), 635–639 (2017). https://doi.org/10.1007/s00193-016-0699-z (Springer)

    Article  Google Scholar 

  17. Lin, H.: Inertially driven inhomogeneitiesin violently collapsing bubble: the validity of the Rayleigh-Plesset equation. J. Fluid Mech. 452, 145–162 (2002)

    Article  MathSciNet  Google Scholar 

  18. Seung, S., Kwak, H.Y.: Shock wave propagation in bubbly liquids at small gas volume fractions. J. Mech. Sci. Technol. 31, 1223–1231 (2017). https://doi.org/10.1007/s12206-017-0221-2 (Springer)

    Article  Google Scholar 

  19. Sokolichin, A., Eigenberger, G., Lapin, A., Lubbert, A.: Dynamic numerical simulation of gas-liquid two-phase flows: Euler/Eler versus Euler/Lagrange. Chem. Eng. Sci. 52, 611–626 (1997)

    Article  Google Scholar 

  20. Kapranova, A.B., Miadonye, A. (2019) Stochastic simulation of cavitation bubbles formation in the axial valve separator influenced by degree of opening. J. Oil, Gas Petrochem. Sci. 2(2), 70–75 (2019). https://doi.org/10.30881/jogps.00026/

    Article  Google Scholar 

  21. Lebedev, A.E., Kapranova, A.B., Melzer, A.M., Solopov, S.A., Voronin, DV, Neklyudov, VS, Serov, E.M.: Utility Model Patent 175446 Russian Federation (2017), IPC F16K 1/12, F16K 47/14, F16K 3/24. Direct flow control valve. Publ. 05.12.2017, Bull. No. 34

    Google Scholar 

  22. Kapranova, A.V., Lebedev, A.E., Melzer, A.M.: The definition of the integral characteristics of the process of formation of cavitation bubbles when operating the control valve. J. Chem. Eng. Process Technol. 8(5), 58. https://doi.org/10.4172/2157-7048-C1-009. https://www.omicsonline.org/ArchiveJCEPT/chemical-engineering-2017-proceedings-posters-accepted-abstracts.php (2017)

  23. Kapranova, A.B.: On the influence of the degree of opening of the regulator valve separator on the process of formation of cavitation bubbles. J. Chem. Eng. Process Technol. 9, 36. https://doi.org/10.4172/2157-7048-C3-016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kapranova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapranova, A.B., Lebedev, A.E., Melzer, A.M., Neklyudov, S.V. (2020). About Formation of Elements of a Cyber-Physical System for Efficient Throttling of Fluid in an Axial Valve. In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds) Cyber-Physical Systems: Advances in Design & Modelling. Studies in Systems, Decision and Control, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-32579-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32579-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32578-7

  • Online ISBN: 978-3-030-32579-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics