Skip to main content

Modeling Cyber-Physical System Object in State Space (on the Example of Paver)

  • Chapter
  • First Online:
Cyber-Physical Systems: Advances in Design & Modelling

Abstract

We has considered results of theoretical description of the cyber-physical system object’s model—asphalt paver with a compacting working body of increased efficiency based on the state space method are considered. The working body includes a tamper, screed and pressure bar. The mathematical model of the process of interaction of the object with the compacting road-building material takes into account the masses of the main structural elements of the working body and pavement. A rheological model of a viscoelastic Kelvin–Voight body is using to describe the compacted material. Suitability of developed mathematical model experimentally confirmed by simulation modelling of the system using program MATLAB/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderl, R., Eigner, M., Sendler, U., Stark, R.: Smart Engineering—Interdisziplinäre Produktentstehung. acatech Diskussion. Springer, 58 p. (2012). https://doi.org/10.1007/978-3-642-29372-6

    Google Scholar 

  2. Serpanos, D., Wolf, M.: Internet-of-Things (IoT) Systems. Architectures, Algorithms, Methodologies. Springer, Cham, 95 p. (2018). https://doi.org/10.1007/978-3-319-69715-4_1

    Google Scholar 

  3. Xu, Q., Chang, G.K.: Adaptive quality control and acceptance of pavement material density for intelligent road construction. Autom. Constr. 62, 78–88 (2015). https://doi.org/10.1016/j.autcon.2015.11.004

    Article  Google Scholar 

  4. Chang, G.K., Mohanraj, K., Stone, W.A., Oesch, D.J., Gallivan, V.: Leveraging intelligent compaction and thermal profiling technologies to improve asphalt pavement construction quality: A case study. Trans. Res. Rec. J. Trans. Res. Board 2672(26), 48–56 (2018). https://doi.org/10.1177/0361198118758285

    Article  Google Scholar 

  5. Pistrol, J., Villwock, S., Völkel, W., Kopf, F., Adam, D.: Continuous compaction control (CCC) with oscillating rollers. Procedia Eng. 143, 514–521 (2016). https://doi.org/10.1016/j.proeng.2016.06.065

    Article  Google Scholar 

  6. Hu, W., Shu, X., Huang, B., Woods, M.: Field investigation of intelligent compaction for hot mix asphalt resurfacing. Front. Struct. Civ. Eng. 11(1), 47–55 (2017). https://doi.org/10.1007/s11709-016-0362-x

    Article  Google Scholar 

  7. Barman, M., Nazari, M., Imran, S.A., Commuri, S., Zaman, M., Beainy, F., Singh, D.: Quality control of subgrade soil using intelligent compaction. Innovative Infrastruct. Solutions 1(1), 23 (2016). https://doi.org/10.1007/s41062-016-0020-0

    Article  Google Scholar 

  8. Barman, M., Imran, S.A., Nazari, M., Commuri, S., Zaman, M.: Use of intelligent compaction in detecting and remediating under-compacted spots during compaction of asphalt layers. In: Hossain Z., Zhang J., Chen C. (eds.) Solving Pavement and Construction Materials Problems with Innovative and Cutting-edge Technologies. GeoChina 2018. Sustainable Civil Infrastructures, pp. 131–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95792-0_11

    Google Scholar 

  9. Fang, X., Bian, Y., Yang, M., Liu, G.: Development of a path following control model for an unmanned vibratory roller in vibration compaction. Adv. Mech. Eng. 10(5), 1–16 (2018). https://doi.org/10.1177/1687814018773660

    Article  Google Scholar 

  10. Bian, Y., Fang, X., Yang, M., Zhao, Z.: Automatic rolling control for unmanned vibratory roller based on fuzzy algorithm. J. Tongji Univ. (Nat. Sci.) 45(12), 1831–1838 (2017). https://doi.org/10.11908/j.issn.0253-374x.2017.12.013

  11. Zhu, S., Li, X., Wang, H., Yu, D.: Development of an automated remote asphalt paving quality control system. Transp. Res. Rec. 2672(26), 28–39 (2018). https://doi.org/10.1177/0361198118758690

    Article  Google Scholar 

  12. Liu, D.H., Li, Z.L., Lian, Z.H.: Compaction quality assessment of earth-rock dam materials using roller integrated compaction monitoring technology. Automat. Constr. 44, 234–246 (2014). https://doi.org/10.1016/j.autcon.2014.04.016

    Article  Google Scholar 

  13. Kenneally, B., Musimbi, O.M., Wang, J.: Finite element analysis of vibratory roller response on layered soil systems. Comput. Geotech. 67, 73–82 (2015). https://doi.org/10.1016/j.compgeo.2015.02.015

    Article  Google Scholar 

  14. Li, J., Zhang, Z., Xu, H.: Dynamic characteristics of the vibratory roller test-bed vibration isolation system: simulation and experiment. J. Terramech. 56, 139–156 (2014). https://doi.org/10.1016/j.jterra.2014.10.002

    Article  Google Scholar 

  15. Xu, Q., Chang, G.K.: Adaptive quality control and acceptance of pavement material density for intelligent road construction. Automat. Constr. 62, 78–88 (2016). https://doi.org/10.1016/j.autcon.2015.11.004

    Article  Google Scholar 

  16. Kyung-Joon, P., Zheng, R., Liu, X.: Cyber-physical systems: milestones and research challenges. Comput. Commun. 36, 1–7 (2012). https://doi.org/10.1016/j.comcom.2012.09.006

    Article  Google Scholar 

  17. Mikheyev, V.V., Saveliev, S.V.: Modelling of deformation process for the layer of elastoviscoplastic media under surface action of periodic force of arbitrary type. J. Phys. Conf. Ser. 944(1), 012079 (2018). https://doi.org/10.1088/1742-6596/944/1/012079

    Google Scholar 

  18. Rinehart, R.V.: Instrumentation of a roller compactor to monitor vibration behavior during earthwork compaction. J. Autom. Constr. 17(2), 144–150 (2008)

    Article  Google Scholar 

  19. White, D., Thompson, M.: Relationships between in situ and roller-integrated compaction measurements for granular soils. J. Geotech. Geoenviron. Eng. 134(12), 1763–1770 (2008). https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1763)

    Article  Google Scholar 

  20. Bejan, S.: The roller-ground dynamic interaction in the compaction process through vibrations for road construction. Rom. J. Trans. Infrastruct. 5(2), 1–9 (2016). https://doi.org/10.1515/rjti-2016-0044

    Article  MathSciNet  Google Scholar 

  21. Beainy, F., Commuri, S., Zaman, M.: Dynamical response of vibratory rollers during the compaction of asphalt pavements. J. Eng. Mech. 140(7), 04014039 (2014). https://doi.org/10.1061/(asce)em.1943-7889.0000730

    Article  Google Scholar 

  22. Imran, S.A., Commuri, S., Barman, M., Zaman, M., Beainy, F.: Modeling the dynamics of asphalt-roller interaction during compaction. J. Constr. Eng. Manag. 143(7), 1763–1770 (2017). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001293

    Article  Google Scholar 

  23. Li, S., Hu, C.: Study on dynamic model of vibratory roller-soil system. IOP Conf. Ser. Earth Environ. Sci. 113, 012187 (2018). https://doi.org/10.1088/1755-1315/113/1/012187

    Article  Google Scholar 

  24. Derusso, P.M., Roy, R.J., Close, Ch.M.: State Variables for Engineers, 608 p. John Wiley & Sons, New York (1965)

    Google Scholar 

  25. Strejc, V.: State Space Theory of Discrete Linear Control, 426 p. John Wiley & Sons (1981)

    Google Scholar 

  26. WIRTGEN GROUP: Concentrating on the essentials: high quality paving. RoadNews 7, 28–47 (2019). https://media.voegele.info/media/03_voegele/aktuelles_und_presse/roadnews_magazin/roadnews_07/RadNews_07__en.pdf

  27. Sun, J., Xu, G.: Dynamics modeling and analysis of paver screed based on computer simulation. J. Appl. Sci. 13(7), 1059–1065 (2013). https://doi.org/10.3923/jas.2013.1059.1065

    Article  Google Scholar 

  28. Phillips, C.L., Harbor R.D.: Feedback Control Systems, 784 p. Pearson (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Prokopev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prokopev, A., Nabizhanov, Z., Ivanchura, V., Emelyanov, R. (2020). Modeling Cyber-Physical System Object in State Space (on the Example of Paver). In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds) Cyber-Physical Systems: Advances in Design & Modelling. Studies in Systems, Decision and Control, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-32579-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32579-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32578-7

  • Online ISBN: 978-3-030-32579-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics