Skip to main content

A ZigBee Based Architecture for Public Safety Communication in Hurricane Scenario

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2019 (FTC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1070))

Included in the following conference series:

Abstract

Communication failure due to a power outage and infrastructure breakdown is a common phenomenon during the hurricane scenario, which hampers the post-disaster rescue operation. For this, an alternative and effective communication infrastructure are needed which can be deployed instantly with limited resources. As such, this paper proposes a ZigBee based ad-hock communication infrastructure for hurricane and post-hurricane scenarios. In this architecture, ZigBee based hop-to-hop communication will be used to communicate among the rescue team and victims, which can be powered by energy sources such as car batteries. Since each message will contain a geo-tagging, the rescue team can track the location of victims along with the normal communication with them. In addition, the performance of the communication infrastructure is further evaluated during and after the hurricane scenarios as well. Since the ZigBee is a low power device and can use power from energy sources such as a car battery, the proposed communication architecture can be a potential solution for a hurricane scenario.

The work is an outcome of the research supported by the U.S. National Science Foundation under the grant RIPS-1441223 and CAREER-1553494.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarwat, A.I., Sundararajan, A., Parvez, I., Moghaddami, M., Moghadasi, A.: Toward a smart city of interdependent critical infrastructure networks. In: Sustainable Interdependent Networks, pp. 21–45. Springer (2018)

    Google Scholar 

  2. Sundararajan, A., Olowu, T.O., Wei, L., Rahman, S., Sarwat, A.I.: A case study on the effects of partial solar eclipse on distributed photovoltaic systems and management areas. arXiv preprint arxiv:1905.11883 (2019)

  3. Khawaja, W., Guvenc, I., Chowdhury, A.: Ultra-wideband channel modeling for hurricanes. In: IEEE 86th Vehicular Technology Conference (VTC-Fall), 1–6 September (2017)

    Google Scholar 

  4. National hurricane center. http://www.nhc.noaa.gov/pastdec.shtml

  5. Rosas, E., Hidalgo, N., Gil-Costa, V., Bonacic, C., Marin, M., Senger, H., Arantes, L., Marcondes, C., Marin, O.: Survey on simulation for mobile ad-hoc communication for disaster scenarios. J. Comput. Sci. Technol. 31(2), 326–349 (2016). https://doi.org/10.1007/s11390-016-1630-x

    Article  Google Scholar 

  6. Gielen, M.: Ad hoc networking using wi-fi during natural disasters: overview and improvements. In: 17th Twente Student Conference on IT, vol. 17 (2012)

    Google Scholar 

  7. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  8. Raffelsberger, C., Hellwagner, H.: Overview of hybrid MANET-DTN networking and its potential for emergency response operations. Electron. Commun. EASST 56, 505–510 (2013)

    Google Scholar 

  9. Bruno, R., Conti, M., Gregori, E.: Mesh networks: commodity multihop ad hoc networks. IEEE Commun. Mag. 43(3), 123–131 (2005)

    Article  Google Scholar 

  10. Wang, C., Sohraby, K., Jana, R., Ji, L., Daneshmand, M.: Voice communications over ZigBee networks. IEEE Commun. Mag. 46(1), 121–127 (2008)

    Article  Google Scholar 

  11. Chuang, M.-C., Chen, M.C.: Deep: density-aware emergency message extension protocol for vanets. IEEE Trans. Wirel. Commun. 12(10), 4983–4993 (2013)

    Article  Google Scholar 

  12. Farnoud, F., Valaee, S.: Reliable broadcast of safety messages in vehicular ad hoc networks. In: IEEE INFOCOM, pp. 226–234 (2009)

    Google Scholar 

  13. Tanuja, K., Sushma, K., Bharathi, M., Arun, K.: A survey on vanet technologies. Int. J. Comput. Appl. 121(18), 1–9 (2015)

    Google Scholar 

  14. Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H.: A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)

    Article  Google Scholar 

  15. Jafari, H., Mahmoudi, M., Rastegar, H., Rabiee, A., Naderi, M.H., Kazemi, F.: Using wide-area signals to improve the inter-area mode damping performance of static VAR compensators. In: 2018 IEEE Texas Power and Energy Conference (TPEC), pp. 1–6, February 2018

    Google Scholar 

  16. Kumar, V., Mishra, S., Chand, N.: Applications of vanets: present and future. Commun. Netw. 5(01), 12 (2013)

    Article  Google Scholar 

  17. Wei, L., Sundararajan, A., Sarwat, A., Biswas, S., Ibrahim, E.: A distributed intelligent framework for electricity theft detection using benford’s law and stackelberg game. In: Resilience Week, pp. 5–11, September 2017

    Google Scholar 

  18. Parvez, I., Islam, A., Kaleem, F.: A key management-based two-level encryption method for AMI. In: 2014 IEEE PES General Meeting|Conference Exposition, pp. 1–5. July 2014

    Google Scholar 

  19. Parvez, I., Sarwat, A.I., Wei, L., Sundararajan, A.: Securing metering infrastructure of smart grid: a machine learning and localization based key management approach. Energies 9(9), 691 (2016). https://www.mdpi.com/1996-1073/9/9/691

    Article  Google Scholar 

  20. Parvez, I., Abdul, F., Sarwat, A.I.: A location based key management system for advanced metering infrastructure of smart grid. In: 2016 IEEE Green Technologies Conference (GreenTech), pp. 62–67, April 2016

    Google Scholar 

  21. Sun, J., Zhu, X., Zhang, C., Fang, Y.: Rescueme: location-based secure and dependable vanets for disaster rescue. IEEE J. Sel. Areas Commun. 29(3), 659–669 (2011)

    Article  Google Scholar 

  22. Wang, Y.: ZigBee-assisted ad-hoc networking of multi-interface mobile devices (2012)

    Google Scholar 

  23. Wisitpongphan, N., Bai, F., Mudalige, P., Sadekar, V., Tonguz, O.: Routing in sparse vehicular ad hoc wireless networks. IEEE J. Sel. Areas Commun. 25(8), 1538–1556 (2007)

    Article  Google Scholar 

  24. Mekonnen, Y., Haque, M., Parvez, I., Moghadasi, A., Sarwat, A.: LTE and WiFi coexistence in unlicensed spectrum with application to smart grid: a review. In: IEEE/PES Transmission and Distribution Conference and Exposition (T&D), pp. 1–5. IEEE (2018)

    Google Scholar 

  25. Parvez, I., Sarwat, A.I.: A spectrum sharing based metering infrastructure for smart grid utilizing LTE and WiFi. Adv. Sci. Technol. Eng. Syst. J. 4(2), 70–77 (2019)

    Article  Google Scholar 

  26. Parvez, I., Jamei, M., Sundararajan, A., Sarwat, A.I.: RSS based loop-free compass routing protocol for data communication in advanced metering infrastructure (AMI) of smart grid. In: 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pp. 1–6, December 2014

    Google Scholar 

  27. Sarwat, A.I., Sundararajan, A., Parvez, I.: Trends and future directions of research for smart grid iot sensor networks. In: Proceedings of International Symposium on Sensor Networks, Systems and Security, May 2018

    Google Scholar 

  28. Parvez, I., Sriyananda, M., Güvenç, İ., Bennis, M., Sarwat, A.: Cbrs spectrum sharing between LTE-U and WiFi: a multiarmed bandit approach. Mob. Inf. Syst. 2016 (2016)

    Google Scholar 

  29. Reina, D.G., Coca, J.M.L., Askalani, M., Toral, S.L., Barrero, F., Asimakopoulou, E., Sotiriadis, S., Bessis, N.: A survey on ad hoc networks for disaster scenarios. In: 2014 International Conference on Intelligent Networking and Collaborative Systems, pp. 433–438, September 2014

    Google Scholar 

  30. Rawat, D.B., Bista, B.B., Yan, G., Olariu, S.: Vehicle-to-vehicle connectivity and communication framework for vehicular ad-hoc networks. In: 2014 Eighth International Conference on Complex, Intelligent and Software Intensive Systems, pp. 44–49. IEEE (2014

    Google Scholar 

  31. Bhargav, K.K., Singhal, R.: ZigBee based vanets for accident rescue missions in 3G wcdma networks. In: 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), pp. 310–313. IEEE (2013)

    Google Scholar 

  32. Shree, K.L., Penubaku, L., Nandihal, G.: A novel approach of using security enabled ZigBee in vehicular communication. In: 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–5. IEEE (2016)

    Google Scholar 

  33. Olowu, T.O., Jafari, M., Sarwat, A.I.: A multi-objective optimization technique for volt-var control with high PV penetration using genetic algorithm. In: 2018 North American Power Symposium (NAPS), pp. 1–6, September 2018

    Google Scholar 

  34. Jafari, M., Olowu, T.O., Sarwat, A.I.: Optimal smart inverters volt-var curve selection with a multi-objective volt-var optimization using evolutionary algorithm approach. In: 2018 North American Power Symposium (NAPS), pp. 1–6, September 2018

    Google Scholar 

  35. Onibonoje, M.O., Olowu, T.O.: Real-time remote monitoring and automated control of granary environmental factors using wireless sensor network. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 113–118. IEEE (2017)

    Google Scholar 

  36. Rahman, S., Moghaddami, M., Sarwat, A.I., Olowu, T., Jafaritalarposhti, M.: Flicker estimation associated with PV integrated distribution network. In: SoutheastCon 2018, pp. 1–6, April 2018

    Google Scholar 

  37. Chlamtac, I., Conti, M., Liu, J.J.-N.: Mobile ad hoc networking: imperatives and challenges. Ad hoc Netw. 1(1), 13–64 (2003)

    Article  Google Scholar 

  38. Johansson, P., Larsson, T., Hedman, N., Mielczarek, B., Degermark, M.: Scenario-based performance analysis of routing protocols for mobile ad-hoc networks. In: Proceedings of the 5th annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 195–206. ACM (1999)

    Google Scholar 

  39. Reina, D., Toral, S.L., Barrero, F., Bessis, N., Asimakopoulou, E.: Evaluation of ad hoc networks in disaster scenarios. In: 2011 third International Conference on Intelligent Networking and Collaborative Systems, pp. 759–764. IEEE (2011)

    Google Scholar 

  40. Raffelsberger, C., Hellwagner, H.: Evaluation of MANET routing protocols in a realistic emergency response scenario. In: Proceedings of the 10th International Workshop on Intelligent Solutions in Embedded Systems, pp. 88–92. IEEE (2012)

    Google Scholar 

  41. Macone, D., Oddi, G., Pietrabissa, A.: MQ-routing: Mobility-, GPS-and energy-aware routing protocol in manets for disaster relief scenarios. Ad Hoc Netw. 11(3), 861–878 (2013)

    Article  Google Scholar 

  42. Lin, Y.-W., Chen, Y.-S., Lee, S.-L.: Routing protocols in vehicular ad hoc networks: a survey and future perspectives. J. Inf. Sci. Eng. 26(3), 913–932 (2010)

    Google Scholar 

  43. Fasolo, E., Zanella, A., Zorzi, M.: An effective broadcast scheme for alert message propagation in vehicular ad hoc networks. In: 2006 IEEE International Conference on Communications, vol. 9, pp. 3960–3965. IEEE (2006)

    Google Scholar 

  44. Peng, J., Cheng, L.: A distributed mac scheme for emergency message dissemination in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 56(6), 3300–3308 (2007)

    Article  Google Scholar 

  45. Lee, D., Bai, S., Kwak, D., Jung, J.: Enhanced selective forwarding scheme for alert message propagation in vehicular ad hoc networks. Int. J. Automot. Technol. 12(2), 251 (2011)

    Article  Google Scholar 

  46. Lee, J.-F., Wang, C.-S., Chuang, M.-C.: Fast and reliable emergency message dissemination mechanism in vehicular ad hoc networks. In: 2010 IEEE Wireless Communication and Networking Conference, pp. 1–6. IEEE (2010)

    Google Scholar 

  47. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 27–34. ACM (2003)

    Google Scholar 

  48. Aschenbruck, N., Gerhards-Padilla, E., Martini, P.: Modeling mobility in disaster area scenarios. Perform. Eval. 66(12), 773–790 (2009)

    Article  Google Scholar 

  49. Saha, S., Sheldekar, A., Mukherjee, A., Nandi, S., et al.: Post disaster management using delay tolerant network. In: Recent Trends in Wireless and Mobile Networks, pp. 170–184. Springer (2011)

    Google Scholar 

  50. Keränen, A., Ott, J., Kärkkäinen, T.: The one simulator for dtn protocol evaluation. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques, p. 55. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2009)

    Google Scholar 

  51. MartíN-Campillo, A., Crowcroft, J., Yoneki, E., Martí, R.: Evaluating opportunistic networks in disaster scenarios. J. Netw. Comput. Appl. 36(2), 870–880 (2013)

    Article  Google Scholar 

  52. Mekonnen, Y., Burton, L., Sarwat, A., Bhansali, S.: Iot sensor network approach for smart farming: an application in food, energy and water system. In: 2018 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–5. IEEE (2018)

    Google Scholar 

  53. Bahrepour, M., Meratnia, N., Poel, M., Taghikhaki, Z., Havinga, P.J.: Distributed event detection in wireless sensor networks for disaster management. In: 2010 International Conference on Intelligent Networking and Collaborative Systems, pp. 507–512. IEEE (2010)

    Google Scholar 

  54. Cayirci, E., Coplu, T.: Sendrom: sensor networks for disaster relief operations management. Wirel. Netw. 13(3), 409–423 (2007)

    Article  Google Scholar 

  55. Miyazaki, T., Kawano, R., Endo, Y., Shitara, D.: A sensor network for surveillance of disaster-hit region. In: 2009 4th International Symposium on Wireless Pervasive Computing, pp. 1–6. IEEE (2009)

    Google Scholar 

  56. Saha, S., Matsumoto, M.: A framework for data collection and wireless sensor network protocol for disaster management. In: 2007 2nd International Conference on Communication Systems Software and Middleware, pp. 1–6. IEEE (2007)

    Google Scholar 

  57. Suzuki, H., Kaneko, Y., Mase, K., Yamazaki, S., Makino, H.: An ad hoc network in the sky, skymesh, for large-scale disaster recovery. In: IEEE Vehicular Technology Conference, pp. 1–5. IEEE (2006)

    Google Scholar 

  58. Shibata, Y., Sato, Y., Ogasawara, N., Chiba, G., Takahata, K.: A new ballooned wireless mesh network system for disaster use. In: 2009 International Conference on Advanced Information Networking and Applications, pp. 816–821. IEEE (2009)

    Google Scholar 

  59. Dilmaghani, R.B., Rao, R.R.: Hybrid wireless mesh network with application to emergency scenarios. J. Softw. 3(2), 52–60 (2008)

    Article  Google Scholar 

  60. Suzuki, T., Shibata, Y.: Autonomous power supplied wireless mesh network for disaster information system. In: 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, pp. 88–93. IEEE (2010)

    Google Scholar 

  61. Park, P., Marco, P.D., Soldati, P., Fischione, C., Johansson, K.H.: A generalized markov chain model for effective analysis of slotted IEEE 802.15.4. In: 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, pp. 130–139, October 2009

    Google Scholar 

  62. Parvez, I., Islam, N., Rupasinghe, N., Sarwat, A.I., Güvenç, İ.: LAA-based LTE and ZigBee coexistence for unlicensed-band smart grid communications. In: SoutheastCon 2016, pp. 1–6. IEEE (2016)

    Google Scholar 

  63. Khawaja, W., Guvenc, I., Chowdhury, A.: Ultra-wideband channel modeling for hurricanes. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–6. IEEE (2017)

    Google Scholar 

  64. Molisch, A.F.: Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans. Veh. Technol. 54(5), 1528–1545 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif I. Sarwat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parvez, I., Mekonnen, Y., I. Sarwat, A. (2020). A ZigBee Based Architecture for Public Safety Communication in Hurricane Scenario. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1070. Springer, Cham. https://doi.org/10.1007/978-3-030-32523-7_34

Download citation

Publish with us

Policies and ethics