Skip to main content

Unpaired Synthetic Image Generation in Radiology Using GANs

  • Conference paper
  • First Online:
Book cover Artificial Intelligence in Radiation Therapy (AIRT 2019)

Abstract

In this work, we investigate approaches to generating synthetic Computed Tomography (CT) images from the real Magnetic Resonance Imaging (MRI) data. Generating the radiological scans has grown in popularity in the recent years due to its promise to enable single-modality radiotherapy planning in clinical oncology, where the co-registration of the radiological modalities is cumbersome. We rely on the Generative Adversarial Network (GAN) models with cycle consistency which permit unpaired image-to-image translation between the modalities. We also introduce the perceptual loss function term and the coordinate convolutional layer to further enhance the quality of translated images. The Unsharp masking and the Super-Resolution GAN (SRGAN) were considered to improve the quality of synthetic images. The proposed architectures were trained on the unpaired MRI-CT data and then evaluated on the paired brain dataset. The resulting CT scans were generated with the mean absolute error (MAE), the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) scores of 60.83 HU, 17.21 dB, and 0.8, respectively. DualGAN with perceptual loss function term and coordinate convolutional layer proved to perform best. The MRI-CT translation approach holds potential to eliminate the need for the patients to undergo both examinations and to be clinically accepted as a new tool for radiotherapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battista, J.J., Rider, W.D., Van Dyk, J.: Computed tomography for radiotherapy planning. Int. J. Radiat. Oncol.* Biol.* Phys. 6(1), 99–107 (1980)

    Article  Google Scholar 

  2. Chen, L., et al.: MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int. J. Radiat. Oncol.* Biol.* Phys. 60(2), 636–647 (2004)

    Article  Google Scholar 

  3. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  4. Coy, P., Kennelly, G.: The role of curative radiotherapy in the treatment of lung cancer. Cancer 45(4), 698–702 (1980)

    Article  Google Scholar 

  5. (CPTAC), N.C.I.C.P.T.A.C.: Radiology Data from the Clinical Proteomic Tumor Analysis Consortium Glioblastoma Multiforme [CPTAC-GBM] collection [Data set]. The Cancer Imaging Archive (2018). https://doi.org/10.7937/k9/tcia.2018.3rje41q1

  6. Gelband, H., Jha, P., Sankaranarayanan, R., Horton, S.: Disease Control Priorities: Cancer, vol. 3. The World Bank (2015)

    Google Scholar 

  7. Hofmann, M., et al.: MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J. Nucl. Med. 49(11), 1875–1883 (2008)

    Article  Google Scholar 

  8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  9. Kapanen, M., Collan, J., Beule, A., Seppälä, T., Saarilahti, K., Tenhunen, M.: Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn. Reson. Med. 70(1), 127–135 (2013)

    Article  Google Scholar 

  10. Karlsson, M., Karlsson, M.G., Nyholm, T., Amies, C., Zackrisson, B.: Dedicated magnetic resonance imaging in the radiotherapy clinic. Int. J. Radiat. Oncol.* Biol.* Phys. 74(2), 644–651 (2009)

    Article  Google Scholar 

  11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. CoRR abs/1609.04802 (2016)

    Google Scholar 

  12. Lei, Y., et al.: MRI-based pseudo CT synthesis using anatomical signature and alternating random forest with iterative refinement model. J. Med. Imaging 5(4), 043504 (2018)

    Article  Google Scholar 

  13. Liu, M., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. CoRR abs/1703.00848 (2017). http://arxiv.org/abs/1703.00848

  14. Liu, R., et al.: An intriguing failing of convolutional neural networks and the coordconv solution. arXiv preprint arXiv:1807.03247 (2018)

  15. Mph, R.L.S., Kimberly, D.: Cancer statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017)

    Article  Google Scholar 

  16. Polesel, A., Ramponi, G., Mathews, V.J.: Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)

    Article  Google Scholar 

  17. Prokopenko, D., Stadelmann, J.V., Schulz, H., Renisch, S., Dylov, D.V.: Synthetic CT generation from MRI using improved DualGAN (2019)

    Google Scholar 

  18. Ren, H.: SRGAN: A PyTorch implementation of SRGAN based on CVPR 2017 paper photo-realistic single image super-resolution using a generative adversarial network

    Google Scholar 

  19. Vallières, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 10117 (2017)

    Article  Google Scholar 

  20. Vallières, M., et al.: Data from Head-Neck-PET-CT. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.8oje5q00

  21. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Isgum, I.: Deep MR to CT synthesis using unpaired data. CoRR abs/1708.01155 (2017). http://arxiv.org/abs/1708.01155

  22. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. CoRR abs/1704.02510 (2017)

    Google Scholar 

  23. Zhang, R., Pfister, T., Li, J.: Harmonic unpaired image-to-image translation. In: ICLR (2019)

    Google Scholar 

  24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint (2017)

    Google Scholar 

Download references

Acknowledgement

Data used in this publication were generated by the National Cancer Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Prokopenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prokopenko, D., Stadelmann, J.V., Schulz, H., Renisch, S., Dylov, D.V. (2019). Unpaired Synthetic Image Generation in Radiology Using GANs. In: Nguyen, D., Xing, L., Jiang, S. (eds) Artificial Intelligence in Radiation Therapy. AIRT 2019. Lecture Notes in Computer Science(), vol 11850. Springer, Cham. https://doi.org/10.1007/978-3-030-32486-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32486-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32485-8

  • Online ISBN: 978-3-030-32486-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics