Skip to main content

The Role of Viruses in the Genesis of Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1042 Accesses

Abstract

Hodgkin lymphoma is a heterogeneous condition. A proportion of cases of classic Hodgkin lymphoma are associated with the Epstein-Barr virus (EBV), a herpesvirus with a worldwide distribution. In these cases, EBV is present in the tumor cells, the Hodgkin and Reed-Sternberg (HRS) cells, and viral genes are expressed. HRS cells lack functional B-cell receptors, and the EBV proteins LMP-1 and LMP-2 appear to play a critical role in rescuing HRS cells, or their precursors, from apoptosis in germinal centers. These, and other data, support the idea that EBV plays a causal role in disease pathogenesis. EBV-associated cases are relatively more common in young children and older adults but make up a smaller proportion of cases in the young adult age-specific incidence peak. In affluent countries approximately one third of cases are EBV-associated, whereas in lower income countries, this proportion can be much higher. Risk factors for EBV-associated Hodgkin lymphoma include infectious mononucleosis, HLA class I genotype, older age, recent EBV infection in early childhood, and material deprivation. In contrast, the majority of adolescent and young adult classic Hodgkin lymphoma cases are EBV-negative. Development of this disease is associated with lack of preschool attendance; this suggests some degree of social isolation in early childhood and has led to speculation that delayed exposure to one or several common pathogens is involved in disease causation. To date, there is no evidence for direct involvement of a single virus in these cases, but it remains possible that early childhood infections play a role in disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BARTs:

BamHI fragment A rightward transcripts

BHRF1:

BamHI-H rightward open reading frame 1

cHL:

Classic Hodgkin lymphoma

DDR1:

Discoidin domain receptor 1

EBER:

EBV-encoded small RNAs

EBNA:

EBV nuclear antigen

EBV:

Epstein-Barr virus

HHV:

Human herpesvirus

HL:

Hodgkin lymphoma

HLA:

Human leukocyte antigen

HPyV:

Human polyomavirus

HRS:

Hodgkin and Reed-Sternberg

IHC:

Immunohistochemistry

LMP:

Latent membrane protein

MCHL:

Mixed cellularity Hodgkin lymphoma

MCPyV:

Merkel cell polyomavirus

miRNAs:

MicroRNAs

MV:

Measles virus

NSHL:

Nodular sclerosis Hodgkin lymphoma

ORF:

Open reading frame

PyV:

Polyomavirus

SNP:

Single nucleotide polymorphism

TSPyV:

Trichodysplasia spinulosa polyomavirus

TTMDV :

Torque teno midi virus

TTMV :

Torque teno mini virus

TTV:

Torque teno virus

References

  1. MacMahon B (1957) Epidemiological evidence of the nature of Hodgkin's disease. Cancer 10:1045–1054

    Article  CAS  PubMed  Google Scholar 

  2. MacMahon B (1966) Epidemiology of Hodgkin's disease. Cancer Res 26:1189–1201

    CAS  PubMed  Google Scholar 

  3. Gutensohn NM (1982) Social class and age at diagnosis of Hodgkin’s disease: new epidemiologic evidence for the “two-disease hypothesis”. Cancer Treat Rep 66:689–695

    CAS  PubMed  Google Scholar 

  4. Alexander FE, McKinney PA, Williams J, Ricketts TJ, Cartwright RA (1991) Epidemiological evidence for the ‘two-disease hypothesis’ in Hodgkin's disease. Int J Epidemiol 20:354–361

    Article  CAS  PubMed  Google Scholar 

  5. Gutensohn NM, Shapiro DS (1982) Social class risk factors among children with Hodgkin’s disease. Int J Cancer 30:433–435

    Article  CAS  PubMed  Google Scholar 

  6. Chang ET, Zheng T, Weir EG et al (2004) Childhood social environment and Hodgkin’s lymphoma: new findings from a population-based case-control study. Cancer Epidemiol Biomark Prev 13:1361–1370

    Google Scholar 

  7. Jarrett RF, Gallagher A, Jones DB et al (1991) Detection of Epstein-Barr virus genomes in Hodgkin's disease: relation to age. J Clin Pathol 44:844–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jarrett RF, Armstrong AA, Alexander E (1996) Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol 7(Suppl 4):5–10

    Article  PubMed  Google Scholar 

  9. Glaser SL, Lin RJ, Stewart SL et al (1997) Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer 70:375–382

    Article  CAS  PubMed  Google Scholar 

  10. Longnecker R, Kieff E, Cohen JI (2013) Epstein-Barr Virus. In: Fields BN, Knipe DM, Howley PM (eds) Fields’ virology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp R1898–RR954

    Google Scholar 

  11. de-The G, Day NE, Geser A et al (1975) Sero-epidemiology of the Epstein-Barr virus: preliminary analysis of an international study – a review. IARC Sci Publ 11:3–16

    Google Scholar 

  12. Young LS, Yap LF, Murray PG (2016) Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16:789–802

    Article  CAS  PubMed  Google Scholar 

  13. Farrell PJ (2018) Epstein-Barr virus and cancer. Annu Rev Pathol 14:29–53

    Article  CAS  PubMed  Google Scholar 

  14. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA (1998) EBV persistence in memory B cells in vivo. Immunity 9:395–404

    Article  CAS  PubMed  Google Scholar 

  15. Rickinson AB, Long HM, Palendira U, Munz C, Hislop AD (2014) Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 35:159–169

    Article  CAS  PubMed  Google Scholar 

  16. Skalsky RL, Cullen BR (2015) EBV noncoding RNAs. Curr Top Microbiol Immunol 391:181–217

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  CAS  PubMed  Google Scholar 

  18. Cai X, Schafer A, Lu S et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edwards RH, Marquitz AR, Raab-Traub N (2008) Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol 82:9094–9106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu JY, Pfuhl T, Motsch N et al (2009) Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol 83:3333–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cosmopoulos K, Pegtel M, Hawkins J et al (2009) Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. J Virol 83:2357–2367

    Article  CAS  PubMed  Google Scholar 

  22. Klinke O, Feederle R, Delecluse HJ (2014) Genetics of Epstein-Barr virus microRNAs. Semin Cancer Biol 26:52–59

    Article  CAS  PubMed  Google Scholar 

  23. Khanna R, Burrows SR (2000) Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol 54:19–48

    Article  CAS  PubMed  Google Scholar 

  24. Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617

    Article  CAS  PubMed  Google Scholar 

  25. Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS (1991) Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet 337:320–322

    Article  CAS  PubMed  Google Scholar 

  26. Wu TC, Mann RB, Charache P et al (1990) Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer 46:801–804

    Google Scholar 

  27. Weiss LM, Movahed LA, Warnke RA, Sklar J (1989) Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med 320:502–506

    Google Scholar 

  28. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J (1987) Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol 129:86–91

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gledhill S, Gallagher A, Jones DB et al (1991) Viral involvement in Hodgkin’s disease: detection of clonal type a Epstein-Barr virus genomes in tumour samples. Br J Cancer 64:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grasser FA, Murray PG, Kremmer E et al (1994) Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): immunohistologic detection of EBNA1 in the malignant cells of Hodgkin’s disease. Blood 84:3792–3798

    Article  CAS  PubMed  Google Scholar 

  31. Deacon EM, Pallesen G, Niedobitek G et al (1993) Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med 177:339–349

    Article  CAS  PubMed  Google Scholar 

  32. Niedobitek G, Kremmer E, Herbst H et al (1997) Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood 90:1664–1672

    Article  CAS  PubMed  Google Scholar 

  33. Qiu J, Cosmopoulos K, Pegtel M et al (2011) A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog 7:e1002193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9:15–27

    Article  CAS  PubMed  Google Scholar 

  35. Kuppers R (2009) Molecular biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2009:491–496

    Article  Google Scholar 

  36. Kuppers R, Klein U, Schwering I et al (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111:529–537

    Google Scholar 

  37. Schwering I, Brauninger A, Klein U et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101:1505–1512

    Google Scholar 

  38. Bechtel D, Kurth J, Unkel C, Kuppers R (2005) Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 106:4345–4350

    Article  CAS  PubMed  Google Scholar 

  39. Mancao C, Altmann M, Jungnickel B, Hammerschmidt W (2005) Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106:4339–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chaganti S, Bell AI, Pastor NB et al (2005) Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood 106:4249–4252

    Article  CAS  PubMed  Google Scholar 

  41. Mancao C, Hammerschmidt W (2007) Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 110:3715–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Caldwell RG, Brown RC, Longnecker R (2000) Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol 74:1101–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Portis T, Longnecker R (2003) Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J Virol 77:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson LJ, Longnecker R (2009) Epstein-Barr virus latent membrane protein 2A exploits Notch1 to alter B-cell identity in vivo. Blood 113:108–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Portis T, Dyck P, Longnecker R (2003) Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 102:4166–4178

    Google Scholar 

  46. Basso K, Klein U, Niu H et al (2004) Tracking CD40 signaling during germinal center development. Blood 104:4088–4096

    Article  CAS  PubMed  Google Scholar 

  47. Devergne O, Cahir McFarland ED, Mosialos G, Izumi KM, Ware CF, Kieff E (1998) Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72:7900–7908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Izumi KM, Kieff ED (1997) The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci U S A 94:12592–12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kieser A, Kilger E, Gires O, Ueffing M, Kolch W, Hammerschmidt W (1997) Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 16:6478–6485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eliopoulos AG, Young LS (1998) Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16:1731–1742

    Article  CAS  PubMed  Google Scholar 

  51. Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS (1999) Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274:16085–16096

    Article  CAS  PubMed  Google Scholar 

  52. Vockerodt M, Morgan SL, Kuo M et al (2008) The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol 216:83–92

    Google Scholar 

  53. Bargou RC, Emmerich F, Krappmann D et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dutton A, O'Neil JD, Milner AE et al (2004) Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A 101:6611–6616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kashkar H, Haefs C, Shin H et al (2003) XIAP-mediated caspase inhibition in Hodgkin’s lymphoma-derived B cells. J Exp Med 198:341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nanbo A, Sugden A, Sugden B (2007) The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO J 26:4252–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kennedy G, Komano J, Sugden B (2003) Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A 100:14269–14274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilson JB, Bell JL, Levine AJ (1996) Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 15:3117–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kang MS, Lu H, Yasui T et al (2005) Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci U S A 102:820–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kang MS, Soni V, Bronson R, Kieff E (2008) Epstein-Barr virus nuclear antigen 1 does not cause lymphoma in C57BL/6J mice. J Virol 82:4180–4183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yajima M, Kanda T, Takada K (2005) Critical role of Epstein-Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol 79:4298–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Skalsky RL, Corcoran DL, Gottwein E et al (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8:e1002484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hancock MH, Skalsky RL (2018) Roles of non-coding RNAs during herpesvirus infection. Curr Top Microbiol Immunol 419:243–280

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Albanese M, Tagawa T, Buschle A, Hammerschmidt W (2017) MicroRNAs of Epstein-Barr virus control innate and adaptive antiviral immunity. J Virol 91:pii: e01667

    Article  Google Scholar 

  65. Chen Y, Fachko D, Ivanov NS, Skinner CM, Skalsky RL (2019) Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation. PLoS Pathog 15:e1007535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murer A, Ruhl J, Zbinden A et al (2019) MicroRNAs of Epstein-Barr virus attenuate T-cell-mediated immune control in vivo. MBio 10:e01941–e01918

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ross N, Gandhi MK, Nourse JP (2013) The Epstein-Barr virus microRNA BART11-5p targets the early B-cell transcription factor EBF1. Am J Blood Res 3:210–224

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Godshalk SE, Bhaduri-McIntosh S, Slack FJ (2008) Epstein-Barr virus-mediated dysregulation of human microRNA expression. Cell Cycle 7:3595–3600

    Article  CAS  PubMed  Google Scholar 

  69. van den Berg A, Kroesen BJ, Kooistra K et al (2003) High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37:20–28

    Article  CAS  PubMed  Google Scholar 

  70. Navarro A, Gaya A, Martinez A et al (2008) MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111:2825–2832

    Article  CAS  PubMed  Google Scholar 

  71. Vrazo AC, Chauchard M, Raab-Traub N, Longnecker R (2012) Epstein-Barr virus LMP2A reduces hyperactivation induced by LMP1 to restore normal B cell phenotype in transgenic mice. PLoS Pathog 8:e1002662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vrzalikova K, Ibrahim M, Nagy E et al (2018) Co-expression of the Epstein-Barr Virus-encoded latent membrane proteins and the pathogenesis of classic Hodgkin lymphoma. Cancers (Basel) 10:285

    Article  CAS  Google Scholar 

  73. Wirtz T, Weber T, Kracker S, Sommermann T, Rajewsky K, Yasuda T (2016) Mouse model for acute Epstein-Barr virus infection. Proc Natl Acad Sci U S A 113:13821–13826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Greaves P, Clear A, Owen A et al (2013) Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood 122:2856–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morales O, Mrizak D, Francois V et al (2014) Epstein-Barr virus infection induces an increase of T regulatory type 1 cells in Hodgkin lymphoma patients. Br J Haematol 166:875–890

    CAS  PubMed  Google Scholar 

  76. Oudejans JJ, Jiwa NM, Kummer JA et al (1996) Analysis of major histocompatibility complex class I expression on Reed-Sternberg cells in relation to the cytotoxic T-cell response in Epstein-Barr virus-positive and -negative Hodgkin’s disease. Blood 87:3844–3851

    Google Scholar 

  77. Barros MH, Segges P, Vera-Lozada G, Hassan R, Niedobitek G (2015) Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical Hodgkin lymphoma and has impact on survival. PLoS One 10:e0124531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kis LL, Takahara M, Nagy N, Klein G, Klein E (2006) Cytokine mediated induction of the major Epstein-Barr virus (EBV)-encoded transforming protein, LMP-1. Immunol Lett 104:83–88

    Article  CAS  PubMed  Google Scholar 

  79. Dukers DF, Jaspars LH, Vos W et al (2000) Quantitative immunohistochemical analysis of cytokine profiles in Epstein-Barr virus-positive and -negative cases of Hodgkin’s disease. J Pathol 190:143–149

    Article  CAS  PubMed  Google Scholar 

  80. Khanna R, Burrows SR, Nicholls J, Poulsen LM (1998) Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 28:451–458

    Article  CAS  PubMed  Google Scholar 

  81. Lee SP, Thomas WA, Murray RJ et al (1993) HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 67:7428–7435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Green MR, Rodig S, Juszczynski P et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18:1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakagomi H, Dolcetti R, Bejarano MT, Pisa P, Kiessling R, Masucci MG (1994) The Epstein-Barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in Burkitt lymphoma lines. Int J Cancer 57:240–244

    Article  CAS  PubMed  Google Scholar 

  84. Cader FZ, Vockerodt M, Bose S et al (2013) The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 122:4237–4245

    Article  CAS  PubMed  Google Scholar 

  85. Jarrett RF, Krajewski AS, Angus B et al (2003) The Scotland and Newcastle epidemiological study of Hodgkin’s disease: impact of histopathological review and EBV status on incidence estimates. J Clin Pathol 56:811–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee JH, Kim Y, Choi JW, Kim YS (2014) Prevalence and prognostic significance of Epstein-Barr virus infection in classical Hodgkin’s lymphoma: a meta-analysis. Arch Med Res 45:417–431

    Article  PubMed  Google Scholar 

  87. Armstrong AA, Alexander FE, Paes RP et al (1993) Association of Epstein-Barr virus with pediatric Hodgkin’s disease. Am J Pathol 142:1683–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Flavell K, Constandinou C, Lowe D et al (1999) Effect of material deprivation on Epstein-Barr virus infection in Hodgkin’s disease in the west midlands. Br J Cancer 80:604–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Henle G, Henle W, Clifford P et al (1969) Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst 43:1147–1157

    CAS  PubMed  Google Scholar 

  90. Crawford DH, Macsween KF, Higgins CD et al (2006) A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis 43:276–282

    Article  PubMed  Google Scholar 

  91. Alexander FE, Jarrett RF, Lawrence D et al (2000) Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer 82:1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hjalgrim H, Askling J, Rostgaard K et al (2003) Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med 349:1324–1332

    Article  CAS  PubMed  Google Scholar 

  93. Hjalgrim H, Smedby KE, Rostgaard K et al (2007) Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res 67:2382–2388

    Article  CAS  PubMed  Google Scholar 

  94. Glaser SL, Clarke CA, Gulley ML et al (2003) Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the greater San Francisco Bay Area, 1988–1998. Cancer 98:300–309

    Article  PubMed  Google Scholar 

  95. Quinlan SC, Landgren O, Morton LM, Engels EA (2010) Hodgkin lymphoma among US solid organ transplant recipients. Transplantation 90:1011–1015

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jarrett RF (2002) Viruses and Hodgkin’s lymphoma. Ann Oncol 13(Suppl 1):23–29

    Google Scholar 

  97. Levin LI, Chang ET, Ambinder RF et al (2012) Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood 120:3750–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang ET, Zheng T, Lennette ET et al (2004) Heterogeneity of risk factors and antibody profiles in Epstein-Barr virus genome-positive and -negative Hodgkin lymphoma. J Infect Dis 189:2271–2281

    Article  PubMed  Google Scholar 

  99. Henle W, Henle G, Andersson J et al (1987) Antibody responses to Epstein-Barr virus-determined nuclear antigen (EBNA)-1 and EBNA-2 in acute and chronic Epstein-Barr virus infection. Proc Natl Acad Sci U S A 84:570–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rubicz R, Yolken R, Drigalenko E et al (2013) A genome-wide integrative genomic study localizes genetic factors influencing antibodies against Epstein-Barr virus nuclear antigen 1 (EBNA-1). PLoS Genet 9:e1003147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Diepstra A, Niens M, Vellenga E et al (2005) Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet 365:2216–2224

    Article  CAS  PubMed  Google Scholar 

  102. Niens M, Jarrett RF, Hepkema B et al (2007) HLA-A∗02 is associated with a reduced risk and HLA-A∗01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood 110:3310–3315

    Article  CAS  PubMed  Google Scholar 

  103. Hjalgrim H, Rostgaard K, Johnson PC et al (2010) HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc Natl Acad Sci U S A 107:6400–6405

    Article  PubMed  PubMed Central  Google Scholar 

  104. Urayama KY, Jarrett RF, Hjalgrim H et al (2012) Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. J Natl Cancer Inst 104:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Huang X, Kushekhar K, Nolte I et al (2012) HLA associations in classical Hodgkin lymphoma: EBV status matters. PLoS One 7:e39986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang X, Hepkema B, Nolte I et al (2012) HLA-A∗02:07 is a protective allele for EBV negative and a susceptibility allele for EBV positive classical Hodgkin lymphoma in China. PLoS One 7:e31865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Johnson PC, McAulay KA, Montgomery D et al (2015) Modeling HLA associations with EBV-positive and -negative Hodgkin lymphoma suggests distinct mechanisms in disease pathogenesis. Int J Cancer 137:1066–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Delahaye-Sourdeix M, Urayama KY, Gaborieau V et al (2015) A novel risk locus at 6p21.3 for Epstein-Barr virus-positive Hodgkin lymphoma. Cancer Epidemiol Biomark Prev 24:1838–1843

    Article  CAS  Google Scholar 

  109. Brennan RM, Burrows SR (2008) A mechanism for the HLA-A∗01-associated risk for EBV+ Hodgkin lymphoma and infectious mononucleosis. Blood 112:2589–2590

    Article  CAS  PubMed  Google Scholar 

  110. Alexander FE, Lawrence DJ, Freeland J et al (2003) An epidemiologic study of index and family infectious mononucleosis and adult Hodgkin’s disease (HD): evidence for a specific association with EBV+ve HD in young adults. Int J Cancer 107:298–302

    Article  CAS  PubMed  Google Scholar 

  111. McAulay KA, Higgins CD, Macsween KF et al (2007) HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J Clin Invest 117:3042–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Khan G, Lake A, Shield L et al (2005) Phenotype and frequency of Epstein-Barr virus-infected cells in pretreatment blood samples from patients with Hodgkin lymphoma. Br J Haematol 129:511–519

    Article  PubMed  Google Scholar 

  113. Hochberg D, Souza T, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA (2004) Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol 78:5194–5204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cohen JI, Mocarski ES, Raab-Traub N, Corey L, Nabel GJ (2013) The need and challenges for development of an Epstein-Barr virus vaccine. Vaccine 31(Suppl 2):B194–B196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Khan G, Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA (1996) Is EBV persistence in vivo a model for B cell homeostasis? Immunity 5:173–179

    Article  CAS  PubMed  Google Scholar 

  116. Brauninger A, Schmitz R, Bechtel D, Renne C, Hansmann ML, Kuppers R (2006) Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer 118:1853–1861

    Google Scholar 

  117. Montgomery ND, Coward WB, Johnson S et al (2016) Karyotypic abnormalities associated with Epstein-Barr virus status in classical Hodgkin lymphoma. Cancer Genet 209:408–416

    Article  CAS  PubMed  Google Scholar 

  118. Tiacci E, Ladewig E, Schiavoni G et al (2018) Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131:2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schmitz R, Hansmann ML, Bohle V et al (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206:981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18:3063–3070

    Article  CAS  PubMed  Google Scholar 

  121. Emmerich F, Meiser M, Hummel M et al (1999) Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood 94:3129–3134

    Google Scholar 

  122. Jungnickel B, Staratschek-Jox A, Brauninger A et al (2000) Clonal deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin’s lymphoma. J Exp Med 191:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lake A, Shield LA, Cordano P et al (2009) Mutations of NFKBIA, encoding IkappaB alpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer 125:1334–1342

    Article  CAS  PubMed  Google Scholar 

  124. Enciso-Mora V, Broderick P, Ma Y et al (2010) A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet 42:1126–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cozen W, Timofeeva MN, Li D et al (2014) A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat Commun 5:3856

    Article  CAS  PubMed  Google Scholar 

  126. Tiacci E, Doring C, Brune V et al (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 120:4609–4620

    Google Scholar 

  127. Clarke CA, Glaser SL, Dorfman RF et al (2001) Epstein-Barr virus and survival after Hodgkin disease in a population-based series of women. Cancer 91:1579–1587

    Article  CAS  PubMed  Google Scholar 

  128. Jarrett RF, Stark GL, White J et al (2005) Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: a population-based study. Blood 106:2444–2451

    Article  CAS  PubMed  Google Scholar 

  129. Keegan TH, Glaser SL, Clarke CA et al (2005) Epstein-Barr virus as a marker of survival after Hodgkin’s lymphoma: a population-based study. J Clin Oncol 23:7604–7613

    Article  PubMed  Google Scholar 

  130. Diepstra A, van Imhoff GW, Schaapveld M et al (2009) Latent Epstein-Barr virus infection of tumor cells in classical Hodgkin’s lymphoma predicts adverse outcome in older adult patients. J Clin Oncol 27:3815–3821

    Article  PubMed  Google Scholar 

  131. Gallagher A, Armstrong AA, MacKenzie J et al (1999) Detection of Epstein-Barr virus (EBV) genomes in the serum of patients with EBV-associated Hodgkin’s disease. Int J Cancer 84:442–448

    Article  CAS  PubMed  Google Scholar 

  132. Kanakry J, Ambinder R (2015) The biology and clinical utility of EBV monitoring in blood. Curr Top Microbiol Immunol 391:475–499

    CAS  PubMed  Google Scholar 

  133. Gutensohn N, Cole P (1977) Epidemiology of Hodgkin’s disease in the young. Int J Cancer 19:595–604

    Article  CAS  PubMed  Google Scholar 

  134. Glaser SL, Keegan TH, Clarke CA et al (2005) Exposure to childhood infections and risk of Epstein-Barr virus--defined Hodgkin’s lymphoma in women. Int J Cancer 115:599–605

    Article  CAS  PubMed  Google Scholar 

  135. Gallagher A, Perry J, Freeland J et al (2003) Hodgkin lymphoma and Epstein-Barr virus (EBV): no evidence to support hit-and-run mechanism in cases classified as non-EBV-associated. Int J Cancer 104:624–630

    Article  CAS  PubMed  Google Scholar 

  136. Staratschek-Jox A, Kotkowski S, Belge G et al (2000) Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in latent membrane protein-1 (LMP-1)-negative classical Hodgkin’s disease. Am J Pathol 156:209–216

    Google Scholar 

  137. Cozen W, Yu G, Gail MH et al (2013) Fecal microbiota diversity in survivors of adolescent/young adult Hodgkin lymphoma: a study of twins. Br J Cancer 108:1163–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Armstrong AA, Shield L, Gallagher A, Jarrett RF (1998) Lack of involvement of known oncogenic DNA viruses in Epstein-Barr virus-negative Hodgkin’s disease. Br J Cancer 77:1045–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schmidt CA, Oettle H, Peng R et al (2000) Presence of human beta- and gamma-herpes virus DNA in Hodgkin’s disease. Leuk Res 24:865–870

    Article  CAS  PubMed  Google Scholar 

  140. Gallagher A, Perry J, Shield L, Freeland J, MacKenzie J, Jarrett RF (2002) Viruses and Hodgkin disease: no evidence of novel herpesviruses in non-EBV-associated lesions. Int J Cancer 101:259–264

    Article  CAS  PubMed  Google Scholar 

  141. Benavente Y, Mbisa G, Labo N et al (2011) Antibodies against lytic and latent Kaposi’s sarcoma-associated herpes virus antigens and lymphoma in the European EpiLymph case-control study. Br J Cancer 105:1768–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Samoszuk M, Ravel J (1991) Frequent detection of Epstein-Barr viral deoxyribonucleic acid and absence of cytomegalovirus deoxyribonucleic acid in Hodgkin’s disease and acquired immunodeficiency syndrome-related Hodgkin’s disease. Lab Investig 65:631–636

    CAS  PubMed  Google Scholar 

  143. Lin SH, Yeh HM, Tzeng CH, Chen PM (1993) Immunoglobulin and T cell receptor beta chain gene rearrangements and Epstein-Barr viral DNA in tissues of Hodgkin’s disease in Taiwan. Int J Hematol 57:251–257

    CAS  PubMed  Google Scholar 

  144. Hernandez-Losa J, Fedele CG, Pozo F et al (2005) Lack of association of polyomavirus and herpesvirus types 6 and 7 in human lymphomas. Cancer 103:293–298

    Article  PubMed  Google Scholar 

  145. Secchiero P, Bonino LD, Lusso P et al (1998) Human herpesvirus type 7 in Hodgkin’s disease. Br J Haematol 101:492–499

    Article  CAS  PubMed  Google Scholar 

  146. Berneman ZN, Torelli G, Luppi M, Jarrett RF (1998) Absence of a directly causative role for human herpesvirus 7 in human lymphoma and a review of human herpesvirus 6 in human malignancy. Ann Hematol 77:275–278

    Article  CAS  PubMed  Google Scholar 

  147. Ablashi D, Agut H, Alvarez-Lafuente R et al (2014) Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol 159:863–870

    Article  CAS  PubMed  Google Scholar 

  148. Ablashi DV, Josephs SF, Buchbinder A et al (1988) Human B-lymphotropic virus (human herpesvirus-6). J Virol Methods 21:29–48

    Article  CAS  PubMed  Google Scholar 

  149. Clark DA, Alexander FE, McKinney PA et al (1990) The seroepidemiology of human herpesvirus-6 (HHV-6) from a case-control study of leukaemia and lymphoma. Int J Cancer 45:829–833

    Article  CAS  PubMed  Google Scholar 

  150. Torelli G, Marasca R, Luppi M et al (1991) Human herpesvirus-6 in human lymphomas: identification of specific sequences in Hodgkin’s lymphomas by polymerase chain reaction. Blood 77:2251–2258

    Article  CAS  PubMed  Google Scholar 

  151. Di Luca D, Dolcetti R, Mirandola P et al (1994) Human herpesvirus 6: a survey of presence and variant distribution in normal peripheral lymphocytes and lymphoproliferative disorders. J Infect Dis 170:211–215

    Article  PubMed  Google Scholar 

  152. Valente G, Secchiero P, Lusso P et al (1996) Human herpesvirus 6 and Epstein-Barr virus in Hodgkin’s disease: a controlled study by polymerase chain reaction and in situ hybridization. Am J Pathol 149:1501–1510

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kashanchi F, Araujo J, Doniger J et al (1997) Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene 14:359–367

    Article  CAS  PubMed  Google Scholar 

  154. Collot S, Petit B, Bordessoule D et al (2002) Real-time PCR for quantification of human herpesvirus 6 DNA from lymph nodes and saliva. J Clin Microbiol 40:2445–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lacroix A, Jaccard A, Rouzioux C et al (2007) HHV-6 and EBV DNA quantitation in lymph nodes of 86 patients with Hodgkin’s lymphoma. J Med Virol 79:1349–1356

    Article  CAS  PubMed  Google Scholar 

  156. Siddon A, Lozovatsky L, Mohamed A, Hudnall SD (2012) Human herpesvirus 6 positive Reed-Sternberg cells in nodular sclerosis Hodgkin lymphoma. Br J Haematol 158:635–643

    Google Scholar 

  157. Daibata M, Taguchi T, Nemoto Y, Taguchi H, Miyoshi I (1999) Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood 94:1545–1549

    Article  CAS  PubMed  Google Scholar 

  158. Leong HN, Tuke PW, Tedder RS et al (2007) The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. J Med Virol 79:45–51

    Article  CAS  PubMed  Google Scholar 

  159. Kaufer BB, Flamand L (2014) Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr Opin Virol 9:111–118

    Article  CAS  PubMed  Google Scholar 

  160. Luppi M, Barozzi P, Marasca R, Ceccherini-Nelli L, Torelli G (1993) Characterization of human herpesvirus 6 genomes from cases of latent infection in human lymphomas and immune disorders. J Infect Dis 168:1074–1075

    Article  CAS  PubMed  Google Scholar 

  161. Maeda A, Sata T, Enzan H et al (1993) The evidence of human herpesvirus 6 infection in the lymph nodes of Hodgkin’s disease. Virchows Arch A Pathol Anat Histopathol 423:71–75

    Article  CAS  PubMed  Google Scholar 

  162. Rojo J, Ferrer Argote VE, Klueppelberg U et al (1994) Semi-quantitative in situ hybridization and immunohistology for antigen expression of human herpesvirus-6 in various lymphoproliferative diseases. In Vivo 8:517–526

    CAS  PubMed  Google Scholar 

  163. Luppi M, Barozzi P, Garber R et al (1998) Expression of human herpesvirus-6 antigens in benign and malignant lymphoproliferative diseases. Am J Pathol 153:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lacroix A, Collot-Teixeira S, Mardivirin L et al (2010) Involvement of human herpesvirus-6 variant B in classic Hodgkin’s lymphoma via DR7 oncoprotein. Clin Cancer Res 16:4711–4721

    Article  CAS  PubMed  Google Scholar 

  165. Thompson J, Choudhury S, Kashanchi F et al (1994) A transforming fragment within the direct repeat region of human herpesvirus type 6 that transactivates HIV-1. Oncogene 9:1167–1175

    CAS  PubMed  Google Scholar 

  166. Schleimann MH, Hoberg S, Solhoj Hansen A et al (2014) The DR6 protein from human herpesvirus-6B induces p53-independent cell cycle arrest in G2/M. Virology 452-453:254–263

    Article  CAS  PubMed  Google Scholar 

  167. Megaw AG, Rapaport D, Avidor B, Frenkel N, Davison AJ (1998) The DNA sequence of the RK strain of human herpesvirus 7. Virology 244:119–132

    Article  CAS  PubMed  Google Scholar 

  168. Luppi M, Marasca R, Barozzi P et al (1993) Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J Med Virol 40:44–52

    Article  CAS  PubMed  Google Scholar 

  169. Torelli G, Barozzi P, Marasca R et al (1995) Targeted integration of human herpesvirus 6 in the p arm of chromosome 17 of human peripheral blood mononuclear cells in vivo. J Med Virol 46:178–188

    Article  CAS  PubMed  Google Scholar 

  170. Bell AJ, Gallagher A, Mottram T et al (2014) Germ-line transmitted, chromosomally integrated HHV-6 and classical Hodgkin lymphoma. PLoS One 9:e112642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tang H, Serada S, Kawabata A et al (2013) CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci U S A 110:9096–9099

    Article  PubMed  PubMed Central  Google Scholar 

  172. Ehlers B, Borchers K, Grund C, Frolich K, Ludwig H, Buhk HJ (1999) Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers. Virus Genes 18:211–220

    Article  CAS  PubMed  Google Scholar 

  173. Jarrett RF, Johnson D, Wilson KS, Gallagher A (2006) Molecular methods for virus discovery. Dev Biol (Basel) 123:77–88. discussion 119–132

    CAS  Google Scholar 

  174. Allander T, Andreasson K, Gupta S et al (2007) Identification of a third human polyomavirus. J Virol 81:4130–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ehlers B, Wieland U (2013) The novel human polyomaviruses HPyV6, 7, 9 and beyond. APMIS 121:783–795

    Article  CAS  PubMed  Google Scholar 

  177. Gaynor AM, Nissen MD, Whiley DM et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3:e64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E (2018) Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo) 73:e558s

    Article  PubMed Central  Google Scholar 

  179. Knowles WA, Pipkin P, Andrews N et al (2003) Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J Med Virol 71:115–123

    Article  PubMed  Google Scholar 

  180. Kean JM, Rao S, Wang M, Garcea RL (2009) Seroepidemiology of human polyomaviruses. PLoS Pathog 5:e1000363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tolstov YL, Pastrana DV, Feng H et al (2009) Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer 125:1250–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kassem A, Schopflin A, Diaz C et al (2008) Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res 68:5009–5013

    Article  CAS  PubMed  Google Scholar 

  183. IARC (2014) Malaria and some polyomaviruses (SV40, BK, JC, and Merkel cell viruses). IARC Monogr Eval Carcinog Risks Hum 104:9–350

    Google Scholar 

  184. Wilson KS, Gallagher A, Freeland JM, Shield LA, Jarrett RF (2006) Viruses and Hodgkin lymphoma: no evidence of polyomavirus genomes in tumor biopsies. Leuk Lymphoma 47:1315–1321

    Article  CAS  PubMed  Google Scholar 

  185. Robles C, Poloczek A, Casabonne D et al (2012) Antibody response to Merkel cell polyomavirus associated with incident lymphoma in the Epilymph case-control study in Spain. Cancer Epidemiol Biomark Prev 21:1592–1598

    Article  CAS  Google Scholar 

  186. Shuda M, Arora R, Kwun HJ et al (2009) Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer 125:1243–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Volter C, Hausen H, Alber D, de Villiers EM (1997) Screening human tumor samples with a broad-spectrum polymerase chain reaction method for the detection of polyomaviruses. Virology 237:389–396

    Article  CAS  PubMed  Google Scholar 

  188. Benharroch D, Shemer-Avni Y, Levy A et al (2003) New candidate virus in association with Hodgkin’s disease. Leuk Lymphoma 44:605–610

    Article  CAS  PubMed  Google Scholar 

  189. Benharroch D, Shemer-Avni Y, Myint YY et al (2004) Measles virus: evidence of an association with Hodgkin’s disease. Br J Cancer 91:572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Maggio E, Benharroch D, Gopas J, Dittmer U, Hansmann ML, Kuppers R (2007) Absence of measles virus genome and transcripts in Hodgkin-Reed/Sternberg cells of a cohort of Hodgkin lymphoma patients. Int J Cancer 121:448–453

    Google Scholar 

  191. Wilson KS, Freeland JM, Gallagher A et al (2007) Measles virus and classical Hodgkin lymphoma: no evidence for a direct association. Int J Cancer 121:442–447

    Article  CAS  PubMed  Google Scholar 

  192. Karunanayake CP, Singh GV, Spinelli JJ et al (2009) Occupational exposures and Hodgkin lymphoma: Canadian case-control study. J Occup Environ Med 51:1447–1454

    Article  PubMed  Google Scholar 

  193. De Vlaminck I, Khush KK, Strehl C et al (2013) Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155:1178–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Freer G, Maggi F, Pifferi M, Di Cicco ME, Peroni DG, Pistello M (2018) The virome and its major component, Anellovirus, a convoluted system molding human immune defenses and possibly affecting the development of asthma and respiratory diseases in childhood. Front Microbiol 9:686

    Article  PubMed  PubMed Central  Google Scholar 

  195. Jelcic I, Hotz-Wagenblatt A, Hunziker A, Zur Hausen H, de Villiers EM (2004) Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78:7498–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. zur Hausen H, de Villiers EM (2005) Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer 115:1–5

    Article  CAS  PubMed  Google Scholar 

  197. Garbuglia AR, Iezzi T, Capobianchi MR et al (2003) Detection of TT virus in lymph node biopsies of B-cell lymphoma and Hodgkin’s disease, and its association with EBV infection. Int J Immunopathol Pharmacol 16:109–118

    Article  CAS  PubMed  Google Scholar 

  198. Figueiredo CP, Franz-Vasconcelos HC, Giunta G et al (2007) Detection of Torque Teno virus in Epstein-Barr virus positive and negative lymph nodes of patients with Hodgkin lymphoma. Leuk Lymphoma 48:731–735

    Google Scholar 

  199. Pan S, Yu T, Wang Y et al (2018) Identification of a Torque Teno Mini Virus (TTMV) in Hodgkin’s lymphoma patients. Front Microbiol 9:1680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth F. Jarrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jarrett, R.F., Hjalgrim, H., Murray, P.G. (2020). The Role of Viruses in the Genesis of Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-32482-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32482-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32481-0

  • Online ISBN: 978-3-030-32482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics