Skip to main content

Bioinformatics Methods to Discover Antivirals Against Zika Virus

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2019)

Abstract

Zika virus is a member of the Flaviviridae virus family, similar to other viruses that affect humans, such as hepatitis C and dengue virus. After its first appearance in 1947, Zika virus reappeared in 2016 causing an international public health emergency. Zika virus was considered a non dangerous human pathogen; however, it is currently considered a pathogen with serious consequences for human health, showing association with neurological complications such as Guillain-Barre syndrome and microcephaly. Then, it is necessary to get antivirals able to inhibit the replication of the Zika virus since vaccines for this virus are not yet available. Zika virus structure is similar to hepatitis C virus structure. This characteristic suggests that anti-hepatitis C virus agents can be used as alternative in treatments against the Zika virus. This work aims to determine a non-nucleoside analogue antivirals that can be considered possible antivirals against Zika virus. In this study, we used computational methods to analyze the Docking and the modeling of the NS5 polymerase of Zika virus and antivirals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.drugbank.ca/.

  2. 2.

    https://pymol.org/2/.

  3. 3.

    https://www.rcsb.org.

References

  1. Alam, A., Imam, N., Ali, S., Malik, M.Z., Ishrat, R., et al.: Recent trends in ZIKV research: a step away from cure. Biomed. Pharmacother. 91, 1152–1159 (2017)

    Article  Google Scholar 

  2. Calvet, G., et al.: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect. Dis. 16(6), 653–660 (2016)

    Article  Google Scholar 

  3. Cox, B.D., Stanton, R.A., Schinazi, R.F.: Predicting Zika virus structural biology: challenges and opportunities for intervention. Antivir. Chem. Chemother. 24(3–4), 118–126 (2015)

    Article  Google Scholar 

  4. Delvecchio, R., et al.: Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 8(12), 322 (2016)

    Article  Google Scholar 

  5. Dick, G., Kitchen, S., Haddow, A., et al.: Zika virus (II). Pathogenicity and physical properties. Trans. R. Soc. Trop. Med. Hyg. 46(5), 521–534 (1952)

    Article  Google Scholar 

  6. Eyer, L., et al.: Nucleoside inhibitors of Zika virus. J. Infect. Dis. 214(5), 707–711 (2016)

    Article  Google Scholar 

  7. Fagbami, A.: Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo state. Epidemiol. Infect. 83(2), 213–219 (1979)

    Google Scholar 

  8. Fauci, A.S., Morens, D.M.: Zika virus in the Americas–yet another arbovirus threat. N. Engl. J. Med. 374(7), 601–604 (2016)

    Article  Google Scholar 

  9. Fink, S.L., et al.: The antiviral drug arbidol inhibits Zika virus. Sci. Rep. 8(1), 8989 (2018)

    Article  MathSciNet  Google Scholar 

  10. Florez, H., Salvatierra, K.: Bioinformatics study of mutations of resistance to antivirals in the NS5A gen of HCV. Int. Inf. Inst. (Tokyo) Inf. 20(9), 6665–6672 (2017)

    Google Scholar 

  11. Hamel, R., et al.: Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect. 18(7–8), 441–449 (2016)

    Article  Google Scholar 

  12. Kieffer, T.L., Kwong, A.D., Picchio, G.R.: Viral resistance to specifically targeted antiviral therapies for hepatitis C (STAT-Cs). J. Antimicrob. Chemother. 65(2), 202–212 (2009)

    Article  Google Scholar 

  13. Koenig, K.L., Almadhyan, A., Burns, M.J.: Identify-isolate-inform: a tool for initial detection and management of Zika virus patients in the emergency department. West. J. Emerg. Med. 17(3), 238 (2016)

    Article  Google Scholar 

  14. Kostyuchenko, V.A., et al.: Structure of the thermally stable Zika virus. Nature 533(7603), 425 (2016)

    Article  Google Scholar 

  15. Kwong, A.D., McNair, L., Jacobson, I., George, S.: Recent progress in the development of selected hepatitis C virus NS3.4A protease and NS5B polymerase inhibitors. Curr. Opin. Pharmacol. 8(5), 522–531 (2008)

    Article  Google Scholar 

  16. Li, C., et al.: Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19(1), 120–126 (2016)

    Article  Google Scholar 

  17. Lou, Z., Sun, Y., Rao, Z.: Current progress in antiviral strategies. Trends Pharmacol. Sci. 35(2), 86–102 (2014)

    Article  Google Scholar 

  18. Organization, W.H., et al.: Zika virus research agenda (2016)

    Google Scholar 

  19. Pang, T., Mak, T.K., Gubler, D.J.: Prevention and control of dengue–the light at the end of the tunnel. Lancet Infect. Dis. 17(3), e79–e87 (2017)

    Article  Google Scholar 

  20. Pattnaik, A., et al.: Discovery of a non-nucleoside rna polymerase inhibitor for blocking Zika virus replication through in silico screening. Antivir. Res. 151, 78–86 (2018)

    Article  Google Scholar 

  21. Penié, J.B., González-Piñera, J.G., Rodríguez, M.A.R., Alfonso, P.P.P.: Medicamentos antivirales. Acta Médica 8(1), 86–100 (1998)

    Google Scholar 

  22. Petersen, L.R., Jamieson, D.J., Powers, A.M., Honein, M.A.: Zika virus. N. Engl. J. Med. 374(16), 1552–1563 (2016)

    Article  Google Scholar 

  23. Plourde, A.R., Bloch, E.M.: A literature review of Zika virus. Emerg. Infect. Dis. 22(7), 1185 (2016)

    Article  Google Scholar 

  24. Rather, I.A., Lone, J.B., Bajpai, V.K., Paek, W.K., Lim, J.: Zika virus: an emerging worldwide threat. Front. Microbiol 8, 1417 (2017)

    Article  Google Scholar 

  25. Sacramento, C.Q., et al.: The clinically approved antiviral drug sofosbuvir impairs Brazilian Zika virus replication. BioRxiv, p. 061671 (2016)

    Google Scholar 

  26. Saiz, J.C., Vázquez-Calvo, Á., Blázquez, A.B., Merino-Ramos, T., Escribano-Romero, E., Martín-Acebes, M.A.: Zika virus: the latest newcomer. Front. Microbiol. 7, 496 (2016)

    Google Scholar 

  27. Salvatierra, K., Florez, H.: Analysis of hepatitis C virus in hemodialysis patients. Infectio 20(3), 130–137 (2016)

    Article  Google Scholar 

  28. Salvatierra, K., Florez, H.: Biomedical mutation analysis (BMA): a software tool for analyzing mutations associated with antiviral resistance. F1000Research 5, 1141 (2016)

    Article  Google Scholar 

  29. Salvatierra, K., Florez, H.: Prevalence of hepatitis B and C infections in hemodialysis patients. F1000Research 5, 1–6 (2016)

    Article  Google Scholar 

  30. Song, B.H., Yun, S.I., Woolley, M., Lee, Y.M.: Zika virus: history, epidemiology, transmission, and clinical presentation. J. Neuroimmunol. 308, 50–64 (2017)

    Article  Google Scholar 

  31. Trott, O., Olson, A.J.: Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    Google Scholar 

  32. Tuset, M., José, M., Del Cacho, E., Alberdi, A., Codina, C., Ribas, J., et al.: Características de los fármacos antivirales. Enfermedades infecciosas y microbiologia clinica 21(8), 433–458 (2003)

    Article  Google Scholar 

  33. Yang, C.C., et al.: A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob. Agents Chemother. 58(1), 110–119 (2014)

    Article  Google Scholar 

  34. Yin, Z., et al.: An adenosine nucleoside inhibitor of dengue virus. Proc. Natl. Acad. Sci. 106(48), 20435–20439 (2009)

    Article  Google Scholar 

  35. Zmurko, J., Marques, R.E., Schols, D., Verbeken, E., Kaptein, S.J., Neyts, J.: The viral polymerase inhibitor 7-deaza-2’-c-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl. Trop. Dis. 10(5), e0004695 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

Authors are grateful for the support received from Universidad Nacional de Misiones, Posadas (Argentina), and the Information Technologies Innovation (ITI) Research Group, Universidad Distrital Francisco Jose de Caldas, Bogota (Colombia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Salvatierra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salvatierra, K., Vera, M., Florez, H. (2019). Bioinformatics Methods to Discover Antivirals Against Zika Virus. In: Florez, H., Leon, M., Diaz-Nafria, J., Belli, S. (eds) Applied Informatics. ICAI 2019. Communications in Computer and Information Science, vol 1051. Springer, Cham. https://doi.org/10.1007/978-3-030-32475-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32475-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32474-2

  • Online ISBN: 978-3-030-32475-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics