Skip to main content

Exploring Synergistic Inter Linkages Among Three Ecological Issues in the Aquatic Environment

  • Chapter
  • First Online:
Socio-economic and Eco-biological Dimensions in Resource use and Conservation

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 424 Accesses

Abstract

Eutrophication and species invasion are formidable problems triggered by the effects of anthropogenic activities in the aquatic environment. Several researchers have highlighted the synergistic impact of climate change on specific aspects of the two problems separately. There is a need of scientific literature that depicts all the existing inter linkages simultaneously so that a complete understanding could be developed. This would enable the development of appropriate mitigation measures; especially in the present times when ecosystems are exposed to multiple environmental issues. The present review addresses this lacuna in the aquatic ecosystem and is the first hand approach to simultaneously link climate change with eutrophication and species invasion. Statistical analysis revealed that such linkages play an important role in magnifying the issues and should always be considered while devising mitigation measures. Aquatic ecosystems can then be effectively conserved and protected against the harmful effects of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Chokhachy R, Alder J, Hostetler S, Gresswell R, Shepard B (2013) Thermal controls of yellowstone cutthroat trout and invasive fishes under climate change. Glob Chang Biol 19(10):3069–3081

    Article  Google Scholar 

  • AnÄ‘elković AA, Živković MM, Cvijanović DL, Novković MZ, Marisavljević DP, Pavlović DM, Radulović SB (2016) The contemporary records of aquatic plants invasion through the danubian floodplain corridor in Serbia. Aquat Invasions 11(4):381–395

    Article  Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726

    Article  Google Scholar 

  • Arias-González JE, González-Gándara C, Cabrera JL, Christensen V (2011) Predicted impact of the invasive lionfish pterois volitions on the food web of a Caribbean coral reef. Environ Res 111(7):917–925

    Article  CAS  Google Scholar 

  • Assmy P, Smetacek V (2009) Algal Blooms. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 27–41

    Chapter  Google Scholar 

  • Bajer PG, Cross TK, Lechelt JD, Chizinski CJ, Weber MJ, Sorensen PW (2015) A cross-ecoregion analysis suggests a hierarchy of ecological alters that regulate recruitment of a globally invasive fish. Divers Distrib 21(5):500–510

    Article  Google Scholar 

  • Bajer PG, Beck MW, Cross TK, Koch JD, Bartodziej WM, Sorensen PW (2016) Biological invasion by a benthivorous fish reduced the cover and species richness of aquatic plants in most lakes of a large North American ecoregion. Glob Chang Biol 22(12):3937–3947

    Article  Google Scholar 

  • Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323

    Article  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodible phosphorus and eutrophication: a global perspective. Bioscience 51(3):227–234

    Article  Google Scholar 

  • Boudouresque CF, Klein J, Ruitton S, Verlaque M (2011) Biological invasion: the Thau Lagoon, a Japanese biological island in the Mediterranean Sea. In: Ceccaldi HJ, Dekeyser I, Girault M, Stora G (eds) Global change: mankind-marine environment interactions. Springer, The Netherlands, pp 151–156

    Google Scholar 

  • Breithaupt H (2003) Aliens on the shores. Eur Mol Biol Organization J 4:547–550

    CAS  Google Scholar 

  • Britton JR, Cucherousset J, Davies GD, Godard MJ, Copp GH (2010) Non-native fishes and climate change: predicting species responses to warming temperatures in a temperate region. Freshw Biol 55(5):1130–1141

    Article  Google Scholar 

  • Brookshire ENJ, Gerber S, Webster JR, Nose JM, Swank WT (2011) Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records. Glob Chang Biol 17:297–308

    Article  Google Scholar 

  • Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97(3):449–458

    Article  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46(5):1394–1407

    Article  CAS  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci 102(29):1002–1005

    Article  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Cascade J, Sorte B, Susan L, Williams SL, Zerebecki RA (2010) Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91(8):2198–2204

    Article  Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595(1):9–26

    Article  Google Scholar 

  • Chan FT, Stanislawczyk K, Sneekes AC, Dvoretsky A, Gollasch S, Minchin D, David M, Jelmert A, Albretsen J, Bailey SA (2019) Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Glob Chang Biol 25:25–38

    Article  Google Scholar 

  • Chen DX, Coughenour MB, Eberts D et al (1994) Interactive effects of CO2 enrichment and temperature on the growth of dioecious Hydrilla verticilala. Environ Exp Bot 34:345–353

    Article  Google Scholar 

  • Chen Y, Sun C, Zhan A (2017) Biological invasions in aquatic ecosystems in China. Aquat Ecosyst Health Manag 20(4):402–412

    Google Scholar 

  • Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10(3):235–251

    Article  Google Scholar 

  • CIESM (2008) Climate warming and related changes in the Mediterranean marine biota. In: Briand F (eds) CIESM workshop monographs. Monaco, p 152

    Google Scholar 

  • Coetzee JA, Hill MP, Schlange D (2009) Potential spread of the invasive plant Hydrilla verticillata in South Africa based on anthropogenic spread and climate suitability. Biol Invasions 11:801–812

    Article  Google Scholar 

  • Coles SL, DeFelic RC, Eldridge LG, Carlton JT (1999) Historical and recent introductions of non-indigenous marine species into Pearl Harbor, Oahu, Hawaiian Islands. Mar Biol 135:147–158

    Article  Google Scholar 

  • Côté IM, Green SJ, Hixon MA (2013) Predatory fish invaders: insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol Conserv 164:50–61

    Article  Google Scholar 

  • Crait JR, Regehr EV, Ben-David M (2015) Indirect effects of bioinvasions in Yellowstone Lake: the response of river otters to declines in native cutthroat trout. Biol Conserv 191:596–605

    Article  Google Scholar 

  • Cranfield HJ, Gordon DP, Willan RC, Marshall BA, Battershill CN, Francis MP, Nelson WA, Glasby CJ, Read GB (1998) Adventive marine species in New Zealand (technical report 34). National Institute of Water and Atmosphere, Wellington

    Google Scholar 

  • D’Angelo C, Wiedenmann J (2014) Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain 7:82–93

    Article  Google Scholar 

  • Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8(5):715–725

    Article  CAS  Google Scholar 

  • Delaney DG, Sperling CD, Adams CS, Leung B (2008) Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol Invasions 10(1):117–128

    Article  Google Scholar 

  • Department of Agriculture and Fisheries, USA (2016) Water lettuce. Government of Queensland, USA

    Google Scholar 

  • Di Carlo G, Otero M (eds) (2012) A changing Mediterranean coastal marine environment under predicted climate-change scenarios. a manager’s guide to understanding and addressing climate change impacts in marine protected areas. Med PAN Collection

    Google Scholar 

  • Ding JQ, Wang R, Fan ZN, Chen ZQ, Fu WD (1995) Studies on the occurrence, damage and control of a bad aquatic weed, Eichhornia crassipes, in China. J Weed Sci 9(2):49–51

    Google Scholar 

  • Dunham JB, Pilliod D, Young MK (2004) Assessing the consequences of nonnative trout in headwater ecosystems in Western North America. Fisheries 29(6):18–24

    Article  Google Scholar 

  • Dutta H (2017) Insights into the impacts of four current environmental problems on flying birds. Energy Ecol Environ 2(5):329–349

    Article  Google Scholar 

  • Dutta H (2018) Insights into the phenomenon of alien plant invasion and its interlink age with three current ecological issues. J Asia-Pac Biodivers 11:188–198

    Article  Google Scholar 

  • Elliot JA (2010) The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob Chang Biol 16:864–876

    Article  Google Scholar 

  • Elvira B, Almodóvar A (2001) Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. J Fish Biol 59(sA):323–331

    Article  Google Scholar 

  • Frumina GT, Gildeeva IM (2014) Eutrophication of water bodies—a global environmental problem. Russ J Gen Chem 84(13):2629–2634

    Google Scholar 

  • Galil B (2007) Loss or gain? invasive aliens and biodiversity in the Mediterranean Sea. Mar Pollut Bull 55:314–322

    Article  CAS  Google Scholar 

  • Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Chang Biol 22(1):151–163

    Article  Google Scholar 

  • Gresswell RE (2011) Biology, status, and management of the Yellowstone Cutthroat Trout. N Amn J Fish Manag 31(5):782–812

    Article  Google Scholar 

  • Grosholz ED, Ruiz GM, Dean CA, Shirley KA, Maron JL, Connors PG (2000) The impacts of a non indigenous marine predator in a California Bay. Ecology 81(5):1206–1224

    Article  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  Google Scholar 

  • Harris LG, Tyrrell MC (2001) Changing community states in the Gulf of Maine: synergism between invaders, overfishing and climate change. Biol Invasions 3:9–21

    Article  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84(1):39–50

    Article  Google Scholar 

  • Henrichs DW, Hetland RD, Campbell L (2015) Identifying bloom origins of the toxic dinoflagellate Karenia brevis in the western Gulf of Mexico using a spatially explicit individual based model. Ecol Model 313:251–258

    Article  Google Scholar 

  • Hewitt C, Campbell M, Thresher R, Martin R (1999) Marine biological invasions of Port Phillip Bay, Victoria (CRIMP technical report 20). CSIRO Marine Research, Hobart

    Google Scholar 

  • Hussner A (2009) Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Res 49(5):506–515

    Article  Google Scholar 

  • Jensen HS, Andersen FØ (1995) Importance of temperature, nitrate and pH for phosphorus release from aerobic sediments of four shallow, eutrophic lakes. Limnol Ocean 37:577–589

    Article  Google Scholar 

  • Jeppesen E, Moss B, Bennion H, Carvalho L, De Meester L, Feuchtmayr H, Friberg N, Gessner MO, Hefting M, Lauridsen TL et al (2010) Interaction of climate change and eutrophication. In: Kernan M, Battarbee BW, Moss B (eds) Climate change impacts on freshwater ecosystems. Wiley-Blackwell, Chichester, pp 119–151

    Chapter  Google Scholar 

  • Jeppesen E, Kronvang B, Olesen JE, Audet J, Sondergaard M, Hoffman CC, Andersen HE, Lauridsen T, Bjerring R, Conde-Porcuna JM et al (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663:1–21

    Article  CAS  Google Scholar 

  • Jöhnk K, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008a) Summer heat waves promote blooms of harmful cyanobacteria. Glob Chang Biol 14:495–512

    Article  Google Scholar 

  • Jöhnk KD, Huisman JEF, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008b) Summer heat waves promote blooms of harmful cyanobacteria. Glob Chang Biol 14(3):495–512

    Article  Google Scholar 

  • Johnson PTJ, Chase JM, Dosch KL, Hartson RB, Gross JA, Larson DJ, Sutherland DR, Carpenter SR (2007) Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci 104(40):15781–15786

    Article  Google Scholar 

  • Khan MN (2014) Eutrophication: challenges and solutions. In: Ansari AA, Gill SS (eds) Eutrophication: causes, consequences and control. Springer Science and Business Media, Dordrecht, pp 1–15

    Google Scholar 

  • Kosten S, Huszar VLM, Bécares E, Costa LS, Donk EV, Hansson L, Jeppesen E, Kruk C, Lacerot G, Mazzeo N (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Chang Biol 18(1):118–126

    Article  Google Scholar 

  • Kotovska G, Khrystenko D, Patoka J, Kouba A (2016) East European crayfish stocks at risk: arrival of non-indigenous crayfish species. Knowl Manag Aquat Ecosyst 417:37

    Article  Google Scholar 

  • Lapointe BE, Bedford BJ (2007) Drift rhodo phyte blooms emerge in Lee County, Florida, USA: evidence of escalating coastal eutrophication. Harmful Algae 6(3):421–437

    Article  CAS  Google Scholar 

  • Lonsdale WM (1993) Rates of spread of an invading species—Mimosa pigra in northern Australia. J Ecol 81(3):513–521

    Article  Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 17(1):84–96

    Article  CAS  Google Scholar 

  • Marchetti MP, Moyle PB, Levine R (2004) Alien fishes in california watersheds: characteristics of successful and failed invaders. Ecol Appl 14(2):587–596

    Article  Google Scholar 

  • McKnight E, García-Berthou E, Srean P, Rius M (2017) Global meta-analysis of native and non indigenous trophic traits in aquatic ecosystems. Glob Chang Biol 23(5):1861–1870

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu Z, Meester LD, Paerl H, Scheffer M (2011) Allied attack: climate change and eutrophication. Inland Waters 1:101–105

    Article  Google Scholar 

  • Munari C (2008) Effects of the exotic invader Musculista senhousia on benthic communities of two Mediterranean lagoons. Hydrobiologia 611:29–43

    Article  Google Scholar 

  • Murray CC, Pakhomov EA, Therriault TW (2011) Recreational boating: a large unregulated vector transporting marine invasive Species. Divers Distrib 17(6):1161–1172

    Article  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  CAS  Google Scholar 

  • Occhipinti-Ambrogi A (2007) Global change and marine communities: Alien species and climate change. Mar Pollut Bull 55(7–9):342–352

    Article  CAS  Google Scholar 

  • Occhipinti-Ambrogi A, Marchini A, Cantone G, Castelli A, Chimenz C, Cormaci M, Froglia C, Furnari G, Gambi MC, Giaccone G, Giangrande A, Gravili C, Mastrototaro F, Mazziotti C, Orsi-Relini L, Piraino S (2011) Alien species along the Italian coasts: an overview. Biol Invasions 13(1):215–237

    Article  Google Scholar 

  • Otero M, Cebrian E, Francour P, Galil B, Savini D (2013) Monitoring marine invasive species in Mediterranean Marine Protected Areas (MPAs): a strategy and practical guide for managers. IUCN, Malaga

    Google Scholar 

  • Paavola M, Olenin S, Leppäkoski E (2005) Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuar Coast Shelf Sci 64(4):738–750

    Article  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1(1):27–37

    Article  CAS  Google Scholar 

  • Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46(5):1349–1363

    Article  CAS  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409(10):1739–1745

    Article  CAS  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22(3):521–533

    Article  Google Scholar 

  • Rahel FJ, Bierwagen B, Taniguchi Y (2008) Managing aquatic species of conservation concern in the face of climate change and invasive species. Conserv Biol 22(3):551–561

    Article  Google Scholar 

  • Raitsos DE, Beaugrand G, Georgopoulos D, Zenetos A, Pancucci-Papadopoulou AM, Theocharis A, Papathanassiou E (2010) Global climate change amplifies the entry of tropical species into the Eastern Mediterranean Sea. Limnol Ocean 55(4):1478–1484

    Article  Google Scholar 

  • Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7(9):781–784

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell M, Hartley AE, Cornellissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity: global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Sala E, Kizilkaya Z, Yildirim D, Ballesteros E (2011) Alien marine fishes deplete algal biomass in the eastern Mediterranean. PLoS ONE 6(2):e17356

    Article  CAS  Google Scholar 

  • Sanseverino I, Conduto D, Pozzoli L, Dobricic S, Lettieri T (2016) Algal bloom and its economic impact (EUR 27905 EN). European Commission

    Google Scholar 

  • Seebens H, Gastner MT, Blasius B (2013) The risk of marine bioinvasion caused by global shipping. Ecol Lett 16(6):782–790

    Article  CAS  Google Scholar 

  • Shiganova TA (1998) Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in the pelagic community structure. Fish Ocean 7:305–310

    Article  Google Scholar 

  • Simkanin C, Davidson I, Falkner M, Sytsma M, Ruiz G (2009) Intra-coastal ballast water flux and the potential for secondary spread of non-native species on the US West Coast. Mar Pollut Bull 58(3):366–374

    Article  CAS  Google Scholar 

  • Smith VH (1990) Phytoplankton responses to eutrophication in inland waters. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing, Amsterdam, pp 231–249

    Google Scholar 

  • Smith VH (1998) Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace ML, Groffman PM (eds) Successes, limitations, and frontiers in ecosystem ecology. Springer, New York, pp 7–49

    Chapter  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139

    Article  CAS  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: Ocean warming facilitates non indigenous species invasions. Proc Natl Acad Sci 99(24):15497–15500

    Article  CAS  Google Scholar 

  • Stiers I, Crohain N, Josens G, Triest L (2011) Impact of three aquatic invasive species on native plants and macro invertebrates in temperate ponds. Biol Invasions 13(12):15–27

    Article  Google Scholar 

  • Stigall AL (2011) Invasive species and biodiversity crises: testing the link in the Late Devonian. PLoS ONE 5:e15584

    Article  CAS  Google Scholar 

  • Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55(Suppl 1):152–174

    Article  Google Scholar 

  • Thomsen MS, Byers JE, Schiel DR, Bruno JF, Olden JD, Wernberg T, Silliman BR (2014) Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar Ecol Prog Ser 495:39–47

    Article  Google Scholar 

  • Twardochleb LA, Olden JD, Larson ER (2013) A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw Sci 32(4):1367–1382

    Article  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2008) Effects of climate change for aquatic invasive species and implications for management and research. National Center for Environmental Assessment, Washington, DC

    Google Scholar 

  • Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Ocean 54(6):2460–2468

    Article  Google Scholar 

  • Wang H, Wang Q, Bowler PA, Xiong W (2016) Invasive aquatic plants in China. Aquat Invasions 11(1):1–9

    Article  Google Scholar 

  • Wengeler WR, Kelt DA, Johnson ML (2010) Ecological consequences of invasive lake trout on river otters in Yellowstone National Park. Biol Conserv 143(5):1144–1153

    Article  Google Scholar 

  • Wiedner C, Rucker J, Bruggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484

    Article  Google Scholar 

  • Wilcox KL, Petrie SA, Maynard LA et al (2003) Historical distribution and abundance of Phragmites australis Long Point, Lake Erie, Ontario. J Gt Lakes Res 29(4):664–680

    Article  Google Scholar 

  • Winfield IJ, Fletcher JJ, James JB (2011) Invasive fish species in the largest lakes of Scotland, Northern Ireland, Wales and England: the collective UK experience. Hydrobiologia 660(1):93–103

    Article  CAS  Google Scholar 

  • Xiang XX, Wu ZL, Luo K, Ding HP, Zhang HY (2013) Impacts of human disturbance on the species composition of higher plants in the wetlands around Dianchi Lake, Yunnan Province of Southwest China. Chin J Appl Ecol 24(9):2457–2463

    Google Scholar 

  • Xiong W, Wang H, Wang Q, Tang J, Bowler PA, Xie D, Pan L, Wang Z (2018) Non-native species in the three Gorges Dam Reservoir: status and risks. Bio Invasions Rec 7(2):153–158

    Google Scholar 

  • Zaiko A, Olenin S, Daunys D, Nalepa T (2007) Vulnerability of benthic habitats to the aquatic invasive species. Biol Invasions 9(6):703–714

    Article  Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. CritAl Rev Plant Sci 23(5):431–452

    Article  Google Scholar 

  • Zhang C, Boyle KJ (2010) The effect of an aquatic invasive species (Eurasian watermilfoil) on lakefront property values. Ecol Econ 70(2):394–404

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himangshu Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, H. (2020). Exploring Synergistic Inter Linkages Among Three Ecological Issues in the Aquatic Environment. In: Roy, N., Roychoudhury, S., Nautiyal, S., Agarwal, S., Baksi, S. (eds) Socio-economic and Eco-biological Dimensions in Resource use and Conservation. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-32463-6_13

Download citation

Publish with us

Policies and ethics