Skip to main content

The Rational Design of Biological Complexity: A Deceptive Metaphor

  • Chapter
  • First Online:
  • 614 Accesses

Abstract

Biologists often claim that they follow a rational design strategy when their research is based on molecular knowledge of biological systems. This claim implies that their knowledge of the innumerable causal connections present in biological systems is sufficient to allow them to deduce and predict the outcome of their experimental interventions. The design metaphor is shown to originate in human intentionality and in the anthropomorphic fallacy of interpreting objects, events, and the behavior of all living organisms in terms of goals and purposes. Instead of presenting rational design as an effective research strategy, it would be preferable to acknowledge that advances in biomedicine are nearly always derived from empirical observations based on trial and error experimentation. The claim that rational design is an effective research strategy was tested in the case of current attempts to develop synthetic vaccines, in particular against human immunodeficiency virus. It was concluded that in this field of biomedicine, trial and error experimentation is more likely to succeed than a rational design approach. Current developments in systems biology are described that may eventually give us a better understanding of the immune system and this may enable us in the future to develop improved vaccines.

Proteomics, 2007, 7, 965–975.

Marc H V Van Regenmortel

Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved, used with permission

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achinstein P. The nature of explanation. Oxford University Press: New York; 1983.

    Google Scholar 

  • Aderem A, Smith KD. A systems approach to dissecting immunity and inflammation. Semin Immunol. 2004;16:55–67.

    Article  CAS  PubMed  Google Scholar 

  • Allen C, Bekoff M. Biological function, adaptation, and natural design. Philos Sci. 1995;62:609–22.

    Article  Google Scholar 

  • Alm E, Arkin AP. Biological networks. Curr Opin Struct Biol. 2003;13:193–202.

    Article  CAS  PubMed  Google Scholar 

  • Auffray C, Imbeaud S, Roux-Rouquié M, Hood L. From functional genomics to systems biology: concepts and practices. CR Biol. 2003;326:879–92.

    Article  CAS  Google Scholar 

  • Ayala FJ. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 55–80.

    Chapter  Google Scholar 

  • Bacarese-Hamilton T, Mezzasoma L, Ardizzoni A, et al. Serodiagnosis of infectious diseases with antigen microarrays. J Appl Microbiol. 2004;96:10–7.

    Article  CAS  PubMed  Google Scholar 

  • Bahk YY, Kim SA, Kim JS, et al. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics. 2004;4:3299–307.

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  CAS  PubMed  Google Scholar 

  • Behe MJ. Darwin’s black box: the biochemical challenge to evolution. New York: Free Press; 1996.

    Google Scholar 

  • Berger R. Understanding science: why causes are not enough. Philos Sci. 1998;65:306–32.

    Article  Google Scholar 

  • Bernardes AT, Zorzenon Dos S. Immune network at the edge of chaos. J Theor Biol. 1997;186:173–87.

    Article  CAS  PubMed  Google Scholar 

  • Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999;283:381–7.

    CAS  PubMed  Google Scholar 

  • Bock G, Goode J. The limits of reductionism in biology. Novartis Foundation Symposium no. 213. Chichester: Wiley; 1998.

    Google Scholar 

  • Bork P, Serrano L. Towards cellular systems in 4D. Cell. 2005;121:507–9.

    Article  CAS  PubMed  Google Scholar 

  • Bottaro A, Inlay MA, Matzke NJ. Immunology in the spotlight at the Dover ‘Intelligent Design’ trial. Nat Immun. 2006;7:433–5.

    Article  CAS  Google Scholar 

  • Bunge M. Philosophical dictionary. Amherst, MA: Prometheus Books; 2003.

    Google Scholar 

  • Cartwright N. How the laws of physics lie. New York, NY: Oxford Uduniversity Press; 1983. p. 1–221.

    Google Scholar 

  • Chakraborty AK, Dustin ML, Shaw AS. In silico models for cellular and molecular immunology: successes, promises and challenges. Nat Immunol. 2003;4:933–6.

    Article  CAS  PubMed  Google Scholar 

  • Crotty S, Ahmed R. Immunological memory in humans. Semin Immunol. 2004;16:197–203.

    Article  CAS  PubMed  Google Scholar 

  • Csete ME, Doyle JC. Reserve engineering of biological complexity. Science. 2002;295:1664–9.

    Article  CAS  PubMed  Google Scholar 

  • Dawkins R. River out of eden. London: Phoenix Orion Books; 1995.

    Google Scholar 

  • Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge, UK: Cambridge University Press; 2004.

    Google Scholar 

  • Demchenko AP. Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit. 2001;14:42–61.

    CAS  PubMed  Google Scholar 

  • Dupré J. The disorder of things. Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press; 1993.

    Google Scholar 

  • Emmeche C. Aspects of complexity in life and science. Philosophica. 1997;59:41–68.

    Google Scholar 

  • Enshell-Seijffers D, Denisov D, Groisman B, Smelyanski L, Meyuhas R, Gross G, Denisova G, Gershoni JM. The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1. J Mol Biol. 2003;334:87–101.

    CAS  PubMed  Google Scholar 

  • Fagerstam LG, Karlsson R. In: Van Oss C, Van Regenmortel MHV, editors. Immunochemistry. New York: Dekker; 1994. p. 949–70.

    Google Scholar 

  • Fischer D, Rood D, Barrette RW, et al. Intranasal immunization of guinea pigs with an immunodominant foot-and-mouth disease virus peptide conjugate induces mucosal and humoral antibodies and protection against challenge. J Virol. 2003;77:7486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friede M, Muller S, Briand JP, Plaué S, Fernandes I, Frisch B, Schuber F, Van Regenmortel MHV. Selective induction of protection against influenza virus infection in mice by a lipid-peptide conjugate delivered in liposomes. Vaccine. 1994;12:791–7.

    Article  CAS  PubMed  Google Scholar 

  • Glassman RH, Sun AY. Biotechnology: identifying advances from the hype. Nat Rev Drug Discov. 2004;3:177–83.

    Article  CAS  PubMed  Google Scholar 

  • Goh C-S, Milburn D, Gerstein M. Conformational changes associated with protein–protein interactions. Curr Opin Struct Biol. 2004;14:104–9.

    CAS  PubMed  Google Scholar 

  • Graham G. Genes: a philosophical enquiry. London: Routledge; 2002.

    Google Scholar 

  • Gross L. Scientific illiteracy and the partisan takeover of biology. PLoS Biol. 2006;4(5):e167. https://doi.org/10.1371/journal.pbio.0040167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haab BB. Antibody arrays in cancer research. Proteomics. 2005;4:377–83.

    CAS  Google Scholar 

  • Haas G, Karaoli G, Ebermayer K, et al. Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics. 2002;2:313–24.

    Article  CAS  PubMed  Google Scholar 

  • Hacking I. Representing and intervening. Princeton, NJ: Cambridge University Press; 1983. p. 1–304.

    Google Scholar 

  • Hanke D. In: Cornwell J, editor. Explanations. Styles of explanation in science. Oxford: Oxford University Press; 2004. p. 143–55.

    Google Scholar 

  • Havlasova J, Hernychova L, Halada P, et al. Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics. 2002;2:857–67.

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine. 2005;23:1559–73. https://doi.org/10.1016/j.vaccine.2004.09.037.

    Article  CAS  PubMed  Google Scholar 

  • Holland JH. Emergence. Reading, MA: Perseus Books; 1994.

    Google Scholar 

  • Joyce JG, Hurni WM, Bogusky MJ, Garsky VM, Liang X, Citron MP, et al. Enhancement of alpha-helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design. J Biol Chem. 2002;277:45811–20. https://doi.org/10.1074/jbc.M205862200.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson R, Roos H. Reaction kinetics. In: Price CP, Newman DJ, editors. Principles and practice of immunoassay. 2nd ed. London: Macmillan; 1997. p. 99–122.

    Google Scholar 

  • Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov. 2006;5:310–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner MW, Gerhart JC. The plausibility of life: resolving Darwin’s dilemna. New Haven, CT: Yale University Press; 2005.

    Google Scholar 

  • Kistler M. 2003. Available at: http://www.institutnicod.org/reduction.htm

  • Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.

    CAS  PubMed  Google Scholar 

  • Kitcher P. Abusing science: the case against creationism. Cambridge, MA: MIT Press; 1982.

    Google Scholar 

  • Kitcher P. Function and design. In: Hull DL, Ruse ME, editors. The philosophy of biology. New York: Oxford University Press; 1998. p. 258–79.

    Google Scholar 

  • Klade CS. Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther. 2002;4:216–23.

    CAS  PubMed  Google Scholar 

  • Kowalczewska M, Fenoller F, Lafitte D, et al. Identification of candidate antigen in Whipple's disease using a serological proteomic approach. Proteomics. 2006;6:3294–305.

    Article  CAS  PubMed  Google Scholar 

  • Kubinyi H. Drug research: myths, hype and reality. Nat Rev Drug Discov. 2003;2:665–8.

    Article  CAS  PubMed  Google Scholar 

  • Kusnezow W, Hoheisel JD. Solid supports for microarray immunoassays. J Mol Recog. 2003;16:165–76.

    Article  CAS  Google Scholar 

  • Kwong PD, Wyatt R, Robinson J, Sweet RW, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393:648–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langeveld JPM, Casal JI, Osterhaus ADME, Cortès E, De Swart R, Vela C, Dalsgaard K, Puijk WC, Schaaper WMM, Meloen RH. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol. 1994;68:4506–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsericsdotter H, Jansson O, Zhukov A, et al. Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications: how to avoid and utilize nonspecific adsorption. Proteomics. 2006;6:2355–64.

    Article  CAS  PubMed  Google Scholar 

  • Lebrun SJ, Petchput WN, Hui A, et al. Development of a sensitive, colorometric microarray assay for allergen-responsive human IgE. J Immunol Methods. 2005;300:24–31.

    Article  CAS  PubMed  Google Scholar 

  • Leng Q, Bentwich Z. Beyond self and nonself: Fuzzy recognition of the immune system. Scand J Immunol. 2002;56:224–32.

    CAS  PubMed  Google Scholar 

  • Love JC, Ronan JL, Grotenberg GM, et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol. 2006;24:703–7.

    Article  CAS  PubMed  Google Scholar 

  • Mahner M, Bunge M. Foundations of biophilosophy. Springer: Berlin; 1997.

    Google Scholar 

  • Markgren PO, Hamalainen M, Danielson UH. Kinetic analysis of the interaction between HIV-1 protease and inhibitors using optical biosensor technology. Anal Biochem. 2000;279:71–8.

    Article  CAS  PubMed  Google Scholar 

  • Melendez-Hevia E, Waddell TG, Cascante M. The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution. J Mol Evol. 1996;43:293–303.

    Article  CAS  PubMed  Google Scholar 

  • Menzies P, Price H. Causation as a secondary quality. Br J Philos Sci. 1993;44:187–203.

    Article  Google Scholar 

  • Michaud GA, Salcius M, Zhou F, et al. Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol. 2003;21:1509–12.

    Article  CAS  PubMed  Google Scholar 

  • Miller KR. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 81–97.

    Chapter  Google Scholar 

  • Morowitz HJ. The emergence of everything. How the world became complex. Oxford: Oxford University Press; 2002.

    Google Scholar 

  • Murzin AG, Patthy L. Sequences and topology: from sequence to structure to function. Curr Opin Struct Biol. 1999;9:359–62.

    CAS  Google Scholar 

  • Nagorsen D, Marinola FM, Panelli MC. Cytokine and chemokine expression profiles of maturing dendritic cells using multiprotein platform arrays. Cytokine. 2004;25:31–5.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson BH. Synthetic vaccines. Oxford: Blackwell Scientific Publishers; 1994.

    Google Scholar 

  • Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol. 2004;78:10724–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Malley MA, Dupré J. Fundamental issues in systems biology. BioEssays. 2005;27:1270–6.

    PubMed  Google Scholar 

  • Ohara R, Knappik A, Shimada K, et al. Antibodies for proteomic research: comparison of traditional immunization with recombinant antibody technology. Proteomics. 2006;6:2638–46.

    Article  CAS  PubMed  Google Scholar 

  • Parren PW, Burton DR. The antiviral activity of antibodies in vitro and in vivo. Adv Immunol. 2001;77:195–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pennock RT. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 130–48.

    Chapter  Google Scholar 

  • Presta L. Antibody engineering for therapeutics. Curr Opin Struct Biol. 2003;13:519–25.

    Article  CAS  PubMed  Google Scholar 

  • Purcell AW, Gorman J. Immunoproteomics: mass spectrometry-based methods to study the targets of the immune response. J Mol Cell Proteomics. 2004;3:193–208.

    Article  CAS  Google Scholar 

  • Rich R, Myszka D. Survey of the year 2003 commercial optical biosensor literature. J Mol Recognit. 2005a;18:1–39.

    Article  CAS  PubMed  Google Scholar 

  • Rich R, Myszka D. Survey of the year 2004 commercial optical biosensor literature. J Mol Recognit. 2005b;18:431–78.

    Article  CAS  PubMed  Google Scholar 

  • Robinson WH, Steinman L, Utz PJ. Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics. 2003;3:2077–84.

    Article  CAS  PubMed  Google Scholar 

  • Rose S. Lifelines. London: Penguin; 1997.

    Google Scholar 

  • Rosenberg A. Philosophy of science. London: Routledge; 2000.

    Google Scholar 

  • Ruse M. Darwin and design: does evolution have a purpose? Cambridge, MA: Harvard University Press; 2002.

    Google Scholar 

  • Ruse M. The evolution-creation struggle. Cambridge, MA: Harvard University Press; 2005.

    Book  Google Scholar 

  • Salmon WC. Causality and explanation. Oxford: Oxford University Press; 1998.

    Google Scholar 

  • Saphire EO, Parren PWHI, Pantophlet R, Zwick MB, et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science. 2001;293:1155–9.

    CAS  PubMed  Google Scholar 

  • Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct. 1997;26:541–66.

    Article  CAS  PubMed  Google Scholar 

  • Shoshan SH, Admon A. Proteomics in cancer vaccine development. Expert Rev Proteomics. 2005;2:229–41.

    Article  CAS  PubMed  Google Scholar 

  • Shrager J. The fiction of function. Bioinformatics. 2003;19:1934–6.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein AM, Rose NR. On the implications of polyclonal B cell activation. Nat Immunol. 2003;4:931–2.

    Article  CAS  PubMed  Google Scholar 

  • Thornhill RH, Ussery DW. A classification of possible routes of Darwinian evolution. J Theor Biol. 2000;203:111–6.

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Ramesh CV, Ma X, Naqvi S, Patel T, Cenizal T, Tiscione M, Diaz K, Crea T, Arnold E, Arnold GF, Taylor JW, et al. Structure-affinity relationships in the gp41 ELDKWA epitope for the HIV-1 neutralizing monoclonal antibody 2F5: effects of side-chain and backbone modifications and conformational constraints. J Pept Res. 2002;59:264–76.

    CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit. 2005;18:343–84.

    CAS  PubMed  Google Scholar 

  • Van Regenmortel MHV. Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods. 1996;9:465–72.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. Molecular dissection of protein antigens and the prediction of epitopes. In: Van Regenmortel MHV, Muller S, editors. Synthetic peptides as antigens. Amsterdam: Elsevier; 1999a. p. 1–78.

    Google Scholar 

  • Van Regenmortel MHV. Molecular design versus empirical discovery in peptide-based vaccines. Coming to terms with fuzzy recognition sites and ill-defined structure-function relationships in immunology. Vaccine. 1999b;18:216–21. https://doi.org/10.1016/S0264-410X(99)00192-9.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV. Molecular dissection of protein antigens and the prediction of epitopes. In: Van Regenmortel MHV, Muller S, editors. Synthetic peptides as antigens. Amsterdam: Elsevier; 1999c. p. 281–317.

    Google Scholar 

  • Van Regenmortel MHV. Are there two distinct research strategies for developing biologically active molecules: rational design and empirical selection. J Mol Recognit. 2000;13:1–4.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. Antigenicity and immunogenicity of synthetic peptides. Biologicals. 2001a;29:209–13.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. Proteomics versus genomics. What type of structure-function relationship are we looking for? J Mol Recognit. 2001c;14:321–2.

    Article  PubMed  CAS  Google Scholar 

  • Van Regenmortel MHV. Reductionism and the search for structure-function relationships in antibody molecules. J Mol Recognit. 2002a;15:240–7.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. A paradigm shift is needed in proteomics: ‘structure determines function’ should be replaced by 'binding determines function. J Mol Recognit. 2002b;15:349–51.

    Article  PubMed  CAS  Google Scholar 

  • Van Regenmortel MHV. Biological complexity emerges from the ashes of genetic reductionism. J Mol Recognit. 2004a;17:145–8.

    Article  CAS  PubMed  Google Scholar 

  • Van Regenmortel MHV. Reductionism and complexity in molecular biology. EMBO J. 2004b;5:1016–20.

    Article  CAS  Google Scholar 

  • Van Regenmortel MHV. The contribution of optical biosensors to the analysis of structure-function relationships in proteins. In: Kamp RM, Calvette JJ, Choli-Papadopoulou T, editors. Methods in proteome and protein analysis. Berlin: Springer; 2004c. p. 93–101.

    Google Scholar 

  • Van Regenmortel MHV. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit. 2006;19:183–7.

    PubMed  Google Scholar 

  • Villen J, de Oliviera E, Nunez JI, Molina N, Sobrino F, Andreu D. Towards a multi-site synthetic vaccine to foot-and-mouth disease: addition of a discontinuous site peptide mimic increases the neutralization response in immunized animals. Vaccine. 2004;22:3523–9.

    CAS  PubMed  Google Scholar 

  • Wagner A. Robustness and evolvability in living systems. Princeton: Princeton University Press; 2005.

    Google Scholar 

  • Weber BH, Depew DJ. In: Dembski WA, Ruse M, editors. Debating design: from Darwin to DNA. Cambridge: Cambridge University Press; 2004. p. 173–90.

    Chapter  Google Scholar 

  • Weng G, Bhalla US, Iyengar R. Complexity in biological signalling systems. Science. 1999;284:92–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson NA, Purcell AW. Use of proteomics to define targets of T-cell immunity. Expert Rev Proteomics. 2005;2:367–80.

    Article  CAS  PubMed  Google Scholar 

  • Wilson IA, Stanfield RL. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994;4:857–67.

    CAS  PubMed  Google Scholar 

  • Woodward J. Making things happen: a theory of causal explanation. Oxford: Oxford University Press; 2003. p. 410.

    Google Scholar 

  • Young M, Edis T, editors. Why intelligent design fails. Piscataway, NJ: Rutgers University Press; 2004.

    Google Scholar 

  • Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol. 2004;4:199–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwick MB, Wang M, Poignard P, Stiegler G, Katinger H, Burton DR, et al. Neutralization synergy of human immunodeficiency virus type 1 primary isolates by cocktails of broadly neutralizing antibodies. J Virol. 2001b;75:12198–208. https://doi.org/10.1128/JVI.75.24.12198-12208.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwick MB, Jensen R, Church S, Wang M, Stiegler G, Kunert R, Katinger H, Burton DR. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J Virol. 2005;79:1252–61.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Regenmortel, M.H.V. (2019). The Rational Design of Biological Complexity: A Deceptive Metaphor. In: HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design. Springer, Cham. https://doi.org/10.1007/978-3-030-32459-9_8

Download citation

Publish with us

Policies and ethics