Skip to main content

Specificity, Polyspecificity and Heterospecificity of Antibody-Antigen Recognition

  • Chapter
  • First Online:
HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design

Abstract

The concept of antibody specificity is analyzed and shown to reside in the ability of an antibody to discriminate between two antigens. Initially antibody specificity was attributed to sequence differences in complementarity-determining regions (CDRs) but as increasing numbers of crystallographic antibody-antigen complexes were elucidated, specificity was analyzed in terms of six antigen-binding regions (ABRs) that only roughly correspond to CDRs. It was found that each ABR differs significantly in its amino acid composition and tends to bind different types of amino acids at the surface of proteins. In spite of these differences, the combined preference of the six ABRs does not allow epitopes to be distinguished from the rest of the protein surface. These findings explain the poor success of past and newly proposed methods for predicting protein epitopes. Antibody polyspecificity refers to the ability of one antibody to bind a large variety of epitopes in different antigens and this property explains how the immune system develops an antibody repertoire that is able to recognize every antigen the system is likely to encounter. Antibody heterospecificity arises when an antibody reacts better with another antigen than with the one used to raise the antibody. As a result an antibody may sometimes appear to have been elicited by an antigen with which it is unable to react. The implications of antibody polyspecificity and heterospecificity in vaccine development are pointed out.

Journal of Molecular Recognition 2014, 27, 627–639.

Marc H V Van Regenmortel

Copyright © 2014 John Wiley and Sons

All rights reserved, used with permission

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achour A, Biquard JM, Krsmanovic V, M’bika JP, Ficheux D, Sikorska M, Cozzone AJ. Induction of human immunodeficiency virus (HIV-1) envelope specific cell-mediated immunity by a non-homologous synthetic peptide. PLoS One. 2007;2(11):e1214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al Moudallal Z, Briand JP, Van Regenmortel MHV. Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus. EMBO J. 1982;1:1005–10.

    PubMed  PubMed Central  Google Scholar 

  • Almagro JC. Identification of differences in the specificity determining residues of antibodies that recognize antigens of different size: implications for the rational design of antibody repertoires. J Mol Recognit. 2004;17:132–43.

    Article  CAS  PubMed  Google Scholar 

  • Batista FD, Neuberger MS. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity. 1998;8:751–9.

    CAS  PubMed  Google Scholar 

  • Berek C, Milstein C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev. 1987;96:23–41. https://doi.org/10.1111/j.1600-065X.1987.tb00507.x.

    Article  CAS  PubMed  Google Scholar 

  • Berzofsky JA. Intrinsic and extrinsic factors in protein antigenic structure. Science. 1985;229:932–40.

    CAS  PubMed  Google Scholar 

  • Berzofsky JA, Schechter AN. The concepts of crossreactivity and specificity in immunology. Mol Immunol. 1981;18:751–63.

    CAS  PubMed  Google Scholar 

  • Bhattacharjee AK, Glaudemans CP. Dual binding specificities in MOPC 384 and 870 murine myeloma immunoglobulins. J Immunol. 1978;120:411–3.

    CAS  PubMed  Google Scholar 

  • Biro JC. Seven fundamental, unsolved questions in molecular biology. Cooperative storage and bi-directional transfer of biological information by nucleic acids and proteins: an alternative to “central dogma”. Med Hypotheses. 2005;63:951–62.

    Article  CAS  Google Scholar 

  • Biro JC. The proteomic code: a molecular recognition code for proteins. Theor Biol Med Model. 2007;4:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blalock JE, Bost KL. Binding of peptides that are specified by complementary RNAs. Biochem J. 1986;234:679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blythe MJ, Flower DR. Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci. 2005;14:246–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvet JP, Stahl D, Rose S, Quan CP, Kazatchkine MD, Kaveri SV. Induction of natural autoantibody activity following treatment of human immunoglobulin with dissociating agents. J Autoimmun. 2001;16:163–72.

    Article  CAS  PubMed  Google Scholar 

  • Boyd WC, Bernard H. Quantitative changes in antibodies and globulin fractions in sera of rabbits injected with several antigens. J Immunol. 1937;33:111–22.

    Google Scholar 

  • Brentani RR. Biological implications of complementary hydropathy of amino acids. J Theor Biol. 1988;135:495–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Wheeler CJ, Shi W, Wu AJ, Yarboro CH, Gallagher M, et al. Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur J Immunol. 1998;28:989–94. https://doi.org/10.1002/(SICI)1521-4141(199803)28:03<989::AID-IMMU989>3.0.CO;2-1.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu H, Yang J, Chou KC. Prediction of linear B cell epitope using amino acid pair antigenicity scale. Amino Acids. 2007;33:423–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen SW, Van Regenmortel MHV, Pellequer JL. Structure-activity relationships in peptide-antibody complexes: implications for epitope prediction and development of synthetic peptide vaccines. Curr Med Chem. 2009;16:953–64.

    PubMed  Google Scholar 

  • Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987;196:901–17.

    Article  CAS  PubMed  Google Scholar 

  • Cohen IR, Hershberg U, Solomon S. Antigen-receptor degeneracy and immunological paradigms. Mol Immunol. 2004;40:993–6.

    CAS  PubMed  Google Scholar 

  • Cohn M. A new concept of immune specificity emerges from a consideration of the self-nonself discrimination. Cell Immunol. 1997;181:103–8.

    CAS  PubMed  Google Scholar 

  • Cohn M. Degeneracy, mimicry and cross-reactivity in immune recognition. Mol Immunol. 2005;42:651–5.

    CAS  PubMed  Google Scholar 

  • Collis AV, Brouwer AP, Martin AC. Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol. 2003;325:337–54.

    Article  CAS  PubMed  Google Scholar 

  • Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr Opin Immunol. 1995;7:812–8.

    Article  CAS  PubMed  Google Scholar 

  • Day ED. Advanced immunochemistry. 2nd ed. New York, NY: Wiley; 1990. p. 1–291.

    Google Scholar 

  • De Vos-Cloetens C, Minsart-Baleriaux V, Urbain-Vansanten G. Possible relationships between antibodies and non-specific immunoglobulins simultaneously induced after antigenic stimulation. Immunology. 1971;20:955–8.

    PubMed  PubMed Central  Google Scholar 

  • Dimitrov JD, Planchais C, Kang J, Pashov A, Vassilev TL, Kaveri SV, Lacroix-Desmazes S. Heterogeneous antigen recognition behavior of induced polyspecific antibodies. Biochem Biophys Res Commun. 2010;398:266–71.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov JD, Planchais C, Roumenina LT, Vassilev TL, Kaveri SV, Lacroix-Desmazes S. Antibody polyreactivity in health and disease: Statuvariabilis. J Immunol. 2013;191:993–9.

    CAS  PubMed  Google Scholar 

  • Ditzel HJ, Itoh K, Burton DR. Determinants of polyreactivity in a large panel of recombinant human antibodies from HIV-1 infection. J Immunol. 1996;157:739–49.

    CAS  PubMed  Google Scholar 

  • Edwards BM, Barash SC, Main SH, Choi GH, Minter R, Ullrich S, Williams E, DuFou L, Wilton J, Albert VR, et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol. 2003;334:103–18.

    CAS  PubMed  Google Scholar 

  • Efroni S, Cohen IR. Simplicity belies a complex system: a response to the minimal model of immunity of Langman and Cohn. Cell Immunol. 2002;216:23–30.

    CAS  PubMed  Google Scholar 

  • Eisen HN. Specificity and degeneracy in antigen recognition: Yin and Yang in the immune system. Annu Rev Immunol. 2001;19:1–21.

    CAS  PubMed  Google Scholar 

  • Eisen HN, Chakraborty AK. Evolving concepts of specificity in immune reactions. Proc Natl Acad Sci U S A. 2010;107:22373–80. https://doi.org/10.1073/pnas.1012051108.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Manzalawy Y, Honavar V. Recent advances in B cell epitope prediction methods. Immunome Res. 2010;6(Suppl 2):1–9. https://doi.org/10.1186/1745-7580-6-S2-S2.

    Article  CAS  Google Scholar 

  • Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A. 1995;92:1254–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frison EA, Stace-Smith R. Cross-reacting and heterospecific monoclonal antibodies produced against arabis mosaic nepovirus. J Gen Virol. 1992;73:2525–30.

    Article  CAS  PubMed  Google Scholar 

  • Gomara MJ, Haro I. Synthetic peptides for the immunodiagnosis of human diseases. Curr Med Chem. 2007;14:531–46.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez S, González-Rodríguez AP, Suárez-Álvarez B, López-Soto A, Huergo-Zapico L, Lopez-Larrea C. Conceptual aspects of self and nonself discrimination. Self Nonself. 2011;2:19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenbaum JA, Andersen PH, Blythe M, Bui H-H, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S, et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit. 2007;20:75–82.

    CAS  PubMed  Google Scholar 

  • Haimovich J, Tarrab R, Sulica A, Sela M. Antibodies of different specificities in normal rabbit sera. J Immunol. 1970;104:1033–4.

    CAS  PubMed  Google Scholar 

  • Hans D, Young PR, Fairlie DP. Current status of short synthetic peptides as vaccines. Med Chem. 2006;2:627–46.

    CAS  PubMed  Google Scholar 

  • Haynes BF, Moody MA, Verkoczy L, Kelsoe G, Alam SM. Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum Antibodies. 2005b;14:59–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopp TP. Retrospective: 12 years of antigenic determinant predictions, and more. Pept Res. 1993;6:183–90.

    CAS  PubMed  Google Scholar 

  • Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981;78:3824–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunziker L, Recher M, Macpherson AJ, Ciurea A, Freigang S, Hengartner H, Zinkernagel RM. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat Immunol. 2003;4:343–9.

    Article  CAS  PubMed  Google Scholar 

  • James LC, Roversi P, Tawfik DS. Antibody multi-specificity mediated by conformational diversity. Science. 2003;299:1362–7.

    CAS  PubMed  Google Scholar 

  • Jimenez R, Salazar G, Baldridge KK, Romesberg FE. Flexibility and molecular recognition in the immune system. Proc Natl Acad Sci U S A. 2003;100:92–7.

    CAS  PubMed  Google Scholar 

  • Keskin O, Gursoy A, Ma B, Nussinov R. Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 2008;108:1225–1244.

    Article  CAS  PubMed  Google Scholar 

  • Khan T, Salunke DM. Structural elucidation of the mechanistic basis of degeneracy in the primary humoral response. J Immunol. 2012;188:1819–27.

    Article  CAS  PubMed  Google Scholar 

  • Klein JS, Bjorkman PJ. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog. 2010;6:e1000908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klein JS, Gnanapragasam PN, Galimidi RP, Foglesong CP, West AP Jr, Bjorkman PJ. Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10. Proc Natl Acad Sci U S A. 2009;106:7385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kringelum JV, Nielsen M, Padkjær SB, Lund O. Structural analysis of B-cell epitopes in antibody: protein complexes. Mol Immunol. 2013;53:24–34.

    Article  CAS  PubMed  Google Scholar 

  • Kunik V, Ofran Y. The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel. 2013;26:599–609.

    CAS  PubMed  Google Scholar 

  • Kunik V, Ashkenazi S, Ofran Y. Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. 2012a;40:W521–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunik V, Peters B, Ofran Y. Structural consensus among antibodies defines the antigen binding site. PLoS Comput Biol. 2012b;8:e1002388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landsteiner K. The specificity of serological reactions. New York: Dover Publications; 1962. p. 330.

    Google Scholar 

  • Langman RE. The specificity of immunological reactions. Mol Immunol. 2000;37:555–61.

    CAS  PubMed  Google Scholar 

  • Laune D, Molina F, Ferrieres G, Mani JC, Cohen P, Simon D, Bernardi T, Piechaczyk M, Pau B, Granier C. Systematic exploration of the antigen binding activity of synthetic peptides isolated from the variable regions of immunoglobulins. J Biol Chem. 1997;272:30937–44.

    CAS  PubMed  Google Scholar 

  • Lefranc MP. IMGT, the international ImMunoGeneTics database. Nucleic Acid Res. 2003;31:307–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefranc MP, Giudicelli V, Kaas Q, Duprat E, Jabado-Michaloud J, Scaviner D, Ginestoux C, Clément O, Chaume D, Lefranc G. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 2005;33:D593–7.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Song B, Chen X, Wang Z, Zeng M, Yu D, Hu D, Chen Z, Jin L, Yang S, Yang C, Chen B. Crystal structure of a four-layer aggregate of engineered TMV CP implies the importance of terminal residues for oligomer assembly. PLoS One. 2013;8:e77717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Zheng D, Zhang C, Zacharias M. Prediction of antigenic epitopes on protein surfaces by consensus scoring. BMC Bioinf. 2009;10:302.

    Article  CAS  Google Scholar 

  • Loor F. On the existence of heterospecific antibodies in sera from rabbits immunized against tobacco mosaic virus determinants. Immunology. 1971;21:557–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludewig B, Krebs P, Metters H, Tatzel J, Türeci O, Sahin U. Molecular characterization of virus-induced autoantibody responses. J Exp Med. 2004;200:637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacCallum RM, Martin AC, Thornton JM. Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol. 1996;262:732–45.

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä O. Single lymph node cells producing heteroclitic bacteriophage antibody. J Immunol. 1965;95:378–86.

    PubMed  Google Scholar 

  • Manivel V, Bayiroglu F, Siddiqui Z, Salunke DM, Rao KV. The primary antibody repertoire represents a linked network of degenerate antigen specificities. J Immunol. 2002;169:888–97.

    CAS  PubMed  Google Scholar 

  • Marchalonis JJ, Kaveri S, Lacroix-Desmazes S, Kazatchkine MD. Natural recognition repertoire and the evolutionary emergence of the combinatorial immune system. FASEB J. 2002;16:842–8.

    Article  CAS  PubMed  Google Scholar 

  • Mariuzza RA. Multiple paths to multispecificity. Immunity. 2006;24:359–61.

    CAS  PubMed  Google Scholar 

  • Markus G, Tritsch GL, Parthasarathy R. A model for hydropathybased peptide interactions. Arch Biochem Biophys. 1989;272:433–9.

    Article  CAS  PubMed  Google Scholar 

  • Mayr E. The growth of biological thought. Diversity, evolution, and inheritance. Cambridge, MA: Harvard University Press; 1982. p. 974.

    Google Scholar 

  • Mazumdar PH. Species and specificity. Cambridge: Cambridge University Press; 1995.

    Google Scholar 

  • Mc Farland BJ, Strong RK. Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity. 2003;19:803–12.

    Article  CAS  Google Scholar 

  • Mc Lennan IC. Germinal centers. Annu Rev Immunol. 1994;12:117–39.

    Article  Google Scholar 

  • McMahon MJ, O’Kennedy R. Polyreactivity as an acquired artefact, rather than a physiologic property, of antibodies: evidence that monoreactive antibodies may gain the ability to bind to multiple antigens after exposure to low pH. J Immunol Methods. 2000;241:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Moticka EJ. The non-specific stimulation of immunoglobulin secretion following specific stimulation of the immune system. Immunology. 1974;27:401–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mouquet H, Nussenzweig MC. Polyreactive antibodies in adaptive immune responses to viruses. Cell Mol Life Sci. 2012;69:1435–45.

    Article  CAS  PubMed  Google Scholar 

  • Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, Shukair S, Artyomov MN, Pietzsch J, Connors M, Pereyra F, Walker BD, Ho DD, Wilson PC, Seaman MS, Eisen HN, Chakraborty AK, Hope TJ, Ravetch JV, Wardemann H, Nussenzweig MC. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature. 2010;467:591–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S. Use of antipeptide antibodies in molecular and cellular biology. In: Van Regenmortel MHV, Muller S, editors. Synthetic peptides as antigens. Amsterdam: Elsevier; 1999b. p. 215–35.

    Google Scholar 

  • Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol. 2009;9:246–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • North B, Lehmann A, Dunbrack RL Jr. A new clustering of antibody CDR loop conformations. J Mol Biol. 2011;406:228–56.

    Article  CAS  PubMed  Google Scholar 

  • Notkins AL. Polyreactivity of antibody molecules. Trends Immunol. 2004;25:174–9.

    Article  CAS  PubMed  Google Scholar 

  • Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286:2156–9.

    Article  CAS  PubMed  Google Scholar 

  • Ofran Y, Schlessinger A, Rost B. Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes. J Immunol. 2008;181:6230–5.

    Article  CAS  PubMed  Google Scholar 

  • Oppezzo P, Dumas G, Bouvet JP, Robello C, Cayota A, Pizarro JC, Dighiero G, Pritsch O. Somatic mutations can lead to a loss of superantigenic and polyreactive binding. Eur J Immunol. 2004;34:1423–32.

    Article  CAS  PubMed  Google Scholar 

  • Padlan EA, Abergel C, Tipper JP. Identification of specificity determining residues in antibodies. FASEB J. 1995;9:133–9.

    Article  CAS  PubMed  Google Scholar 

  • Parnes O. From interception to incorporation: degeneracy and promiscuous recognition as precursors of a paradigm shift in immunology. Mol Immunol. 2004;40:985–91.

    CAS  PubMed  Google Scholar 

  • Pellequer JL, Westhof E, Van Regenmortel MHV. Predicting the location of continuous epitopes in proteins from their primary structures. Methods Enzymol. 1991;203:176–201.

    CAS  PubMed  Google Scholar 

  • Ponomarenko JV, Van Regenmortel MHV. B cell epitope prediction. In: Gu J, Bourne PE, editors. Structural bioinformatics. 2nd ed. Hoboken, NJ: John Wiley; 2009. p. 849–79.

    Google Scholar 

  • Raghunathan G, Smart J, Williams J, Almagro JC. Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens. J Mol Recognit. 2012;25:103–13.

    Article  CAS  PubMed  Google Scholar 

  • Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381:751–8.

    Article  CAS  PubMed  Google Scholar 

  • Richards FF, Konigsberg WH, Rosenstein RW, Varga JM. On the specificity of antibodies. Science. 1975;187:130–7.

    CAS  PubMed  Google Scholar 

  • Rubinstein ND, Mayrose I, Halperin D, Yekutieli D, Gershoni JM, Pupko T. Computational characterization of B-cell epitopes. Mol Immunol. 2008;45:3477–89.

    CAS  PubMed  Google Scholar 

  • Sällberg M, Sherefa K, Zhang ZX. The antigen/antibody specificity exchanger: a new peptide based tool for re-directing antibodies of other specificities to recognize the V3 domain of HIV-1 gp120. Biochem Biophys Res Commun. 1994;205:1386–90.

    Article  PubMed  Google Scholar 

  • Schroer JA, Bender T, Feldmann T, Kim KJ. Mapping epitopes on the insulin molecule using monoclonal antibodies. Eur J Immunol. 1983;13:693–700.

    CAS  PubMed  Google Scholar 

  • Schubert W. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems. J Mol Recognit. 2014;27:3–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Böckelmann R, Malykh Y, Gollnick H, Friedenberger M, Bode M, Dress AWM. Analyzing proteome topology and function by automated multi-dimensional fluorescence microscopy. Nat Biotechnol. 2006;24:1270–8.

    Article  CAS  PubMed  Google Scholar 

  • Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol. 2013;4:302. https://doi.org/10.3389/fimmu.2013:00302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sela-Culang I, Benhnia MR, Matho MH, Kaever T, Maybeno M, Schlossman A, Nimrod G, Li S, Xiang Y, Zajonc D, Crotty S, Ofran Y, Peters B. Using a combined computational-experimental approach to predict antibody-specific B cell epitopes. Structure. 2014;22(4):646–57. https://doi.org/10.1016/j.str.2014.02.003.

    Article  CAS  PubMed  Google Scholar 

  • Sercarz EE, Maverakis E. Recognition and function in a degenerate immune system. Mol Immunol. 2004;40:1003–108.

    Article  CAS  PubMed  Google Scholar 

  • Sethi DK, Agarwal A, Manivel V, Rao KV, Salunke DM. Differential epitope positioning within the germline antibody enhances promiscuity in the primary immune response. Immunity. 2006;24:429–8.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein AM. History of immunology: development of the concept of immunologic specificity: II. Cell Immunol. 1982;71:183–95.

    Article  CAS  PubMed  Google Scholar 

  • Sivalingam GN, Sheperd AJ. An analysis of B-cell epitope discontinuity. Mol Immunol. 2012;51:304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soga S, Kuroda D, Shirai H, Kobori M, Hirayama N. Use of amino acid composition to predict epitope residues of individual antibodies. Protein Eng Des Sel. 2010;23:441–8.

    Article  CAS  PubMed  Google Scholar 

  • Sperling R, Francus T, Siskind GW. Degeneracy of antibody specificity. J Immunol. 1983;131:882–5.

    CAS  PubMed  Google Scholar 

  • Stewart J. Immunoglobulins did not arise in evolution to fight infection. Immunol Today. 1992;13:396–9.

    Article  CAS  PubMed  Google Scholar 

  • Sundberg EJ, Mariuzza RA. Molecular recognition in antibody-antigen complexes. Adv Protein Chem. 2002;61:119–60.

    PubMed  Google Scholar 

  • Talmage DW. Immunological specificity, unique combinations of selected natural globulins provide an alternative to the classical concept. Science. 1959;129:1643–8.

    CAS  PubMed  Google Scholar 

  • Tarlinton DM, Smith KG. Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre. Immunol Today. 2000;21:436–41.

    Article  CAS  PubMed  Google Scholar 

  • Thornton JM, Edwards MS, Taylor WR, Barlow DJ. Location of “continuous” antigenic determinants in the protruding regions of proteins. EMBO J. 1986;5:409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe IF, Brooks CL III. Molecular evolution of affinity and flexibility in the immune system. Proc Natl Acad Sci U S A. 2007;104:8821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmerman P, Puijk WC, Meloen RH. Functional reconstruction and synthetic mimicry of a conformational epitope using CLIPS technology. J Mol Recognit. 2007;20:283–99.

    CAS  PubMed  Google Scholar 

  • Tropsha A, Kizer JS, Chaiken IM. Making sense from antisense: a review of experimental data and developing ideas on sense-antisense peptide recognition. J Mol Recognit. 1992;5:43–54.

    CAS  PubMed  Google Scholar 

  • Underwood PA. Theoretical considerations of the ability of monoclonal antibodies to detect antigenic differences between closely related variants, with particular reference to heterospecific reactions. J Immunol Methods. 1985;85:295–307.

    CAS  PubMed  Google Scholar 

  • Urbain-Vansanten G. Concomitant synthesis, in separate cells, of non-reactive immunoglobulins and specific antibodies after immunization with tobacco mosaic virus. Immunology. 1970;19:783–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. Serological studies on naturally occurring strains and chemically induced mutants of tobacco mosaic virus. Virology. 1967;31:467–80.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV. Serology and immunochemistry of plant viruses. New-York: Academic; 1982. p. 268.

    Google Scholar 

  • Van Regenmortel MHV. The concept and operational definition of protein epitopes. Philos Trans R Soc Lond B. 1989b;323:451–66.

    Article  Google Scholar 

  • Van Regenmortel MHV. From absolute to exquisite specificity. Reflections on the fuzzy nature of species, specificity and antigenic sites. J Immunol Methods. 1998;216:37–48.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit. 2006;19:183–7.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. Synthetic peptide vaccines and the search for neutralization of B cell epitopes. Open Vaccine J. 2009a;2:33–44. https://doi.org/10.2174/1875035401002010033.

    Article  Google Scholar 

  • Van Regenmortel MHV. Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch Virol. 2012a;157:1–20.

    Article  CAS  PubMed  Google Scholar 

  • Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol. 2012b;3:194. https://doi.org/10.3389/fimmu.2012.00194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. An outdated notion of antibody specificity is one of the major detrimental assumptions of the structure-based reverse vaccinology paradigm, which prevented it from developing an effective HIV-1 vaccine. Front Immunol. 2014b;5:593. https://doi.org/10.3389/fimmu.1014.00593.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV, Hardie G. Immunochemical studies of tobacco mosaic virus--II. Univalent and monogamous bivalent binding of IgG antibody. Immunochemistry. 1976;13:503–7.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV, Pellequer J-L. Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? Pept Res. 1994;7:224–8.

    PubMed  Google Scholar 

  • Von Sengbusch P, Wittman HG. Serological and physicochemical properties of the wild strain and two mutants of tobacco mosaic virus with the same amino acid exchange in different positions of the protein chain. Biochem Biophys Res Commun. 1965;18:780–7.

    Google Scholar 

  • Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8:607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wabl M, Cascalho M, Steinberg C. Hypermutation in antibody affinity maturation. Curr Opin Immunol. 1999;11:186–9.

    Article  CAS  PubMed  Google Scholar 

  • Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.

    CAS  PubMed  Google Scholar 

  • Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens R. Structural insights into the evolution of an antibody combining site. Science. 1997;276:1665–9.

    Article  CAS  PubMed  Google Scholar 

  • Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970;132:211–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer R, Garcia KC, Goldstein B, Greenspan R, Hafler D, Hodgkin P, et al. Polyspecificity of T cell and B cell receptor recognition. Semin Immunol. 2007;19:216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao B, Zhang L, Liang S, Zhang C. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One. 2012;7:e45152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Beuscher AE IV, Andryski SE, Stevens RC, Schultz PG. Structural plasticity and the evolution of antibody affinity and specificity. J Mol Biol. 2003;330:651–6.

    CAS  PubMed  Google Scholar 

  • Zhang W, Xiong Y, Zhao M, Zou H, Ye X, Liu J. Prediction of conformational B-cell epitopes from 3D structure by random forests with a distant-based feature. BMC Bioinf. 2011;12:341.

    Article  CAS  Google Scholar 

  • Zhou ZH, Tzioufas AG, Notkins AL. Properties and function of polyreactive antibodies and polyreactive antigen-binding B cells. J Autoimmun. 2007a;29:219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe. 2007b;1:51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Xu L, Dey B, Hessell AJ, VanRyk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature. 2007c;445:732–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grisé H, Ofek GA, Taylor KA, Roux KH. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature. 2006;441:847–52.

    Article  CAS  PubMed  Google Scholar 

  • Zotos D, Tarlington DM. Determining germinal centre B cell fate. Trends Immunol. 2012;33:281–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Regenmortel, M.H.V. (2019). Specificity, Polyspecificity and Heterospecificity of Antibody-Antigen Recognition. In: HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design. Springer, Cham. https://doi.org/10.1007/978-3-030-32459-9_4

Download citation

Publish with us

Policies and ethics