Skip to main content

Viral Species, Viral Genomes and HIV Vaccine Design: Is the Rational Design of Biological Complexity a Utopia?

  • Chapter
  • First Online:
HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design
  • 568 Accesses

Abstract

A common logical confusion is prevalent in the whole of biology, namely that biological species are viewed both as an abstract category in an hierarchical classifcation and as a concrete kind of organism. This is partly due to the fact that the vast majority of living organisms do not have common names that difer from the Latin name of the species to which the organism belongs. However, it is somewhat astonishing that the same confusion exists in virology since every virus has a common name, diferent from the species name to which the virus belongs, which could be used to refer to the infectious viral entity as a concrete material object. The original 1991 ICTV defnition of virus species stated that a virus species is a polythetic class of viruses and thus that a species is a class, namely a conceptual construction of the mind and not a physical, real object located in space and time. This is the reason why it is not possible to develop a vaccine against the HIV species. In 2013, the ICTV redefned a virus species no longer as a class but as a material object consisting of a monophyletic group of viruses that were all physically part of the species. This new defnition is reminiscent of an earlier school of thought known as bionominalism which considered species to be concrete individuals rather than classes. Both bionominalism and the new ICTV defnition are based on the logical fallacy of reifcation which treats abstractions such as classes as if they were concrete physical entities. The implications of this new ontology of virus species for virus taxonomy and for the possibility of incorporating nucleotide metagenomic sequences in the current ICTV classifcation is discussed.

Archives of Virology, 2018, volume 63, 2047–2054

Marc H V Van Regenmortel

Copyright © 2018 Springer Nature

All rights reserved, used with permission

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MJ, Lefkowitz EJ, King AM, Carstens EB. Recently agreed changes to the international code of virus classification and nomenclature. Arch Virol. 2013;158:2633–9.

    Article  CAS  PubMed  Google Scholar 

  • Amarasingham A, Geman S, Harrison MT. Ambiguity and nonidentifiability in the statistical analysis of neural codes. Proc Natl Acad Sci U S A. 2015;112:6455–60. https://doi.org/10.1073/pnas.1506400112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrieu J-M, Lu W. A 30-year journey of trial and error towards a tolerogenic AIDS vaccine. Arch Virol. 2018;163:2025–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azimzadeh A, Van Regenmortel MHV. Measurement of affinity of viral monoclonal antibodies by ELISA titration of free antibody in equilibrium mixtures. J Immunol Methods. 1991;141:199–208.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin JT, Lessmann O. What is Russell’s paradox? Scientific American; 1998. http://www.scientificamerican.com/article/whatis-russells-paradox/. Accessed 23 July 2018.

  • Ball LA. The universal taxonomy of viruses in theory and practice. In: Fauquet CM, et al., editors. Eighth ICTV report. Amsterdam: Elsevier; 2005. p. 11–6.

    Google Scholar 

  • Brito AF, Braconi CT, Weidmann M, Dichler M, Alves JM, Gruber A, Zanotto PM. The Pangenome of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV). Genome Biol Evol. 2015;8:94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buck RC, Hull DL. The logical structure of the Linnaean hierarchy. Syst Zool. 1966;15:97–111.

    Article  Google Scholar 

  • Bunge M. Modes of existence. Rev Metaphys. 2016;70:225.

    Google Scholar 

  • Daszak, et al. The global virome project. Intern J Infect Dis. 18.001. 2016; https://doi.org/10.1016/ijid.2016.11.096.

  • Du Sautoy M. What we cannot know. New York: Harper Collins Publishers; 2016. p. 36–73.

    Google Scholar 

  • Finlay BJ, Esteban GF. Can biological complexity be rationalized? Bioscience. 2009;59:333–40.

    Article  Google Scholar 

  • Geoghenan JL, Holmes EC. Predicting virus emergence amid evolutionary noise. Open Biol. 2017:170189. https://doi.org/10.1098/rsob.170189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbs AJ, Gibbs MJ. A broader definition of the ‘virus species’. Arch Virol. 2006;151:1419–22.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs AJ, Armstrong JS, Gibbs MJ. A type of nucleotide motif that distinguishes tobamovirus species more efficiently than nucleotide signatures. Arch Virol. 2004;149:1941–54.

    CAS  PubMed  Google Scholar 

  • Gigerenzer G, Selten R. Bounded rationality. The adaptive toolbox. Cambridge, MA: MIT Press; 2002.

    Google Scholar 

  • Green S. Can biological complexity be reverse engineered ? Stud Hist Phil Biol Biomed Sci. 2015;53:73–83.

    Article  Google Scholar 

  • King A. Comments to proposed modification to code rule 3.21 (defining virus species). ICTV Discussions; 2012. https://talk.ictvonline.org/ictv1/f/general_ictv_discussions-20/3930/comments-toproposed-modification-to-code-rule-3-21-defining-virus-species. Accessed 23 July 2018.

  • Korkut A, Hendrickson WA. Structural plasticity and conformational transitions of HIV envelope glycoprotein gp120. PLoS One. 2012;7:e52170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurakin A. Self-organization versus Watchmaker: ambiguity of molecular recognition and design charts of cellular circuity. J Mol Recognit. 2007;20:205–114.

    Article  CAS  PubMed  Google Scholar 

  • Kurakin A. Scale-free flow of life: on the biology, economics, and physics of the cell. Theor Biol Med Model. 2009;6:6–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurakin A. Order without design. Theor Biol Med Model. 2010;7:12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laubichler M. Tinkering: a conceptual and historical evaluation. Tinkering: the microevolution of development: Novartis Foundation Symposium, vol. 284. Chichester: Wiley; 2007. p. 20–9.

    Book  Google Scholar 

  • Ma B, Shatsky M, Wolfson HJ, Nussinov R. Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci. 2002;11:184–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahner M, Bunge M. Foundations of biophilosophy. Springer: Berlin; 1997.

    Google Scholar 

  • Nowak MA, McMichael AJ. How HIV defeats the immune system. Sci Am. 1995;273:42–9.

    Article  Google Scholar 

  • Olshansky SJ, Carnes BA, Butler RN. If humans were built to last. Sci Am. 2003;284:50–5.

    Article  Google Scholar 

  • Pulendran B. Systems vaccinology: probing humanity’s diverse immune systems with vaccines. Proc Natl Acad Sci U S A. 2014;111:12300–6. https://doi.org/10.1073/pnas.1400476111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richalet-Sécordel PM, Rauffer-Bruyère N, Christensen LL, Ofenloch-Haehnle B, Seidel C, Van Regenmortel MHV. Concentration measurement of unpurified proteins using biosensor technology under conditions of partial mass transport limitation. Anal Biochem. 1997;249:165–73.

    Article  PubMed  Google Scholar 

  • Rios A. Fundamental challenges to the development of a preventive HIV vaccine. Curr Opin Virol. 2018;29:26–32.

    Article  PubMed  Google Scholar 

  • Ruse M. All my love if for individuals. Evolution. 1998;52:283–8.

    Article  Google Scholar 

  • Simon H. The sciences of the artificial. 3rd ed. Cambridge, MA: MIT Press; 1996.

    Google Scholar 

  • Simmonds P. A clash of ideas - the varying uses of the ‘species’ term in virology and their utility for classifying viruses in metagenomic datasets. J Gen Virol. 2018;99:277–87.

    Article  CAS  PubMed  Google Scholar 

  • Simmonds P, Adams MJ, BenkÅ‘ M, Breitbart M, Brister JR, et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.

    Article  CAS  PubMed  Google Scholar 

  • Tsai CJ, Ma B, Nussinov R. Protein-protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci. 2009;34:594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umotoy J, Bagaya BS, Joyce C, Schiffner T, Menis S, et al. Rapid and focused maturation of a VRC01-class HIV broadly neutralizing antibody lineage involves both binding and accommodation of the N276-glycan. Immunity. 2019;51:141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. Antigenicity and immunogenicity of synthetic peptides. Biologicals. 2001a;29:209–13.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. Pitfalls of reductionism in the design of peptide-based vaccines. Vaccine. 2001b;19:2369–74.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. A paradigm shift is needed in proteomics: ‘structure determines function’ should be replaced by 'binding determines function. J Mol Recognit. 2002b;15:349–51.

    PubMed  Google Scholar 

  • Van Regenmortel MHV. Two meanings of reverse vaccinology and the empirical nature of vaccine science. Vaccine. 2011a;29:7875.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV. Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit. 2011b;24:741–53.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol. 2012b;3:194. https://doi.org/10.3389/fimmu.2012.00194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit. 2014a;27:627–39.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV. An outdated notion of antibody specificity is one of the major detrimental assumptions of the structure-based reverse vaccinology paradigm, which prevented it from developing an effective HIV-1 vaccine. Front Immunol. 2014b;5:593. https://doi.org/10.3389/fimmu.1014.00593.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. The metaphor that viruses are living is alive and well, but it is no more than a metaphor. Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci. 2016a;59:117–24. https://doi.org/10.1016/j.shpsc.2016.02.017.

    Article  Google Scholar 

  • Van Regenmortel MHV. Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. Int J Mol Sci. 2016b;17:1591–625. https://doi.org/10.3390/ijms17091591.

    Article  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. Immune systems rather than antigenic epitopes elicit and produce protective antibodies against HIV. Vaccine. 2017;35:1985–6. https://doi.org/10.1016/j.vaccine.2017.03.017.

    Article  CAS  PubMed  Google Scholar 

  • Van Regenmortel MHV. Development of a preventive HIV vaccine requires solving inverse problems which is unattainable by rational vaccine design. Front Immunol. 2018a;8:2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. Viral species, viral genomes and HIV vaccine design: is the rational design of biological complexity a utopia? Arch Virol. 2018b;137:2047–54.

    Article  Google Scholar 

  • Van Regenmortel MHV. The species problem in virology. Adv Virus Res. 2018c;100:1–18.

    Article  PubMed  Google Scholar 

  • Zeder-Lutz G, Benito A, Van Regenmortel MHV. Active concentration measurements of recombinant biomolecules using biosensor technology. J Mol Recognit. 1999;12:300–9.

    CAS  PubMed  Google Scholar 

  • Zeder-Lutz G, Hoebeke J, Van Regenmortel MHV. Differential recognition of epitopes present on monomeric and oligomeric forms of gp160 glycoprotein of human immunodeficiency virus type 1 by human monoclonal antibodies. Eur J Biochem. 2001;268:2856–66.

    CAS  PubMed  Google Scholar 

  • Zolla-Pazner S, Cohen SS, Boyd D, Kong XP, Seaman M, Nussenzweig M, Klein F, Overbaugh J, Totrov M. Structure/function studies involving the V3 region of the HIV-1 envelope delineate multiple factors that affect neutralization sensitivity. J Virol. 2016;90:636–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Regenmortel, M.H.V. (2019). Viral Species, Viral Genomes and HIV Vaccine Design: Is the Rational Design of Biological Complexity a Utopia?. In: HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design. Springer, Cham. https://doi.org/10.1007/978-3-030-32459-9_24

Download citation

Publish with us

Policies and ethics