Skip to main content

Old and New Concepts and Strategies in HIV Vaccinology: A Report from a Workshop Held in Rome on 17 June 2016

  • Chapter
  • First Online:
HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design
  • 549 Accesses

Abstract

A workshop entitled: “Revisiting HIV inactivation, elite controllers, immunogenetics and new strategies for developing HIV vaccines” took place during a Eurovaccine Conference held in Rome in June 2016. The purpose of this workshop was to revisit old and new concepts and strategies in HIV vaccinology in the light of novel, and sometimes unexpected, data from recent preventative and therapeutic vaccine approaches that could guide future vaccine research. Panelists were asked to respond to five questions regarding key points and critical issues and problems in current HIV/AIDS vaccine research. Their responses are summarized.

Journal of AIDS & Clinical Research, 2016, 7, 634.

Ensoli, B., Cafaro, A., Amicosante, M., Andrieu, J.M., Boyer, J.D., Garcia, F., Gray, G., King, M.R., Rios, A., Sandstorm, E., Van Regenmortel, M.H.V

Copyright: © 2016 Ensoli, Cafaro, Amicosante, Andrieu, Boyer, Garcia, Gray, King, Rios, Sandstorm, Van Regenmortel.

This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 International License (https://creativecommons.org/licenses/by/3.0/deed.en)

To view the original article, visit https://www.omicsonline.org/open-access/old-and-new-concepts-and-strategies-in-hiv-vaccinology-a-report-froma-workshop-held-in-rome-on-17-june-2016-2155-6113-1000634.php?aid=81815

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrieu JM, Chen S, Lai C, Guo W, Lu W. Mucosal SIV vaccines comprising inactivated virus particles and bacterial adjuvants induce CD8+ T-regulatory cells that suppress SIV positive CD4+ cell activation and prevent SIV infection in the macaque model. Front Immunol. 2014;5:297. https://doi.org/10.3389/fimmu.2014.00297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arneson R. Egalitarianism. The Stanford Encyclopedia of Philosophy; 2013.

    Google Scholar 

  • Bellino S, Francavilla V, Longo O, Tripiciano A, Paniccia G, et al. Parallel conduction of the phase I preventive and therapeutic trials based on the Tat vaccine candidate. Rev Recent Clin Trials. 2009;4:195–204.

    Article  CAS  PubMed  Google Scholar 

  • Bellino S, Tripiciano A, Picconi O, Francavilla V, Longo O, et al. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load and with delay of disease progression: Results of a 3 year cohort study. Retrovirology. 2014;11:49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borsetti A, Baroncelli S, Maggiorella MT, Moretti S, Fanales-Belasio E, et al. Containment of infection in tat vaccinated monkeys after rechallenge with a higher dose of SHIV89.6P(cy243). Viral Immunol. 2009;22:117–24.

    Article  CAS  PubMed  Google Scholar 

  • Buchak L. Why high-risk, non-expected-utility-maximising gambles can be rational and beneficial: the case of HIV cure studies. J Med Ethics. 2016;2015:103118.

    Google Scholar 

  • Burton DR. Antibodies, viruses and vaccines. Nat Rev Immunol. 2002;2:706–13.

    Article  CAS  PubMed  Google Scholar 

  • Burton DR, Desrosiers RC, Doms RW, Feinberg MB, Gallo RC, Hahn B, Hoxie JA, Hunter E, Korber B, Landay A, et al. Public health. A sound rationale needed for phase III HIV-1 vaccine trials. Science. 2004a;303:316.

    Article  CAS  PubMed  Google Scholar 

  • Cafaro A, Caputo A, Fracasso C, Maggiorella MT, Goletti D, et al. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med. 1999;5:643–50.

    Article  CAS  PubMed  Google Scholar 

  • Cafaro A, Bellino S, Titti F, Maggiorella MT, Sernicola L, et al. Impact of viral dose and major histocompatibility complex class IB haplotype on viral outcome in Mauritian Cynomolgus monkeys vaccinated with Tat upon challenge with simian/human immunodeficiency virus SHIV89.6P. J Virol. 2010;84:8953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cafaro A, Tripiciano A, Sgadari C, Bellino S, Picconi O, et al. Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine. Expert Opin Biol Ther. 2015;15(Suppl 1):S13–29.

    Article  PubMed  Google Scholar 

  • Cebere I, Dorrell L, McShane H, Simmons A, McCormack S, et al. Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. Vaccine. 2006;24:417–25.

    Article  CAS  PubMed  Google Scholar 

  • Cohen J. Infectious disease. Obstacles loom along path to the end of AIDS. Science. 2016;353:432–3.

    Article  CAS  PubMed  Google Scholar 

  • Corey L, Nabel GJ, Dieffenbach C, Gilbert P, Haynes BF, et al. HIV-1 vaccines and adaptive trial designs. Sci Transl Med. 2011;3:79ps13.

    PubMed  PubMed Central  Google Scholar 

  • Corey L, Gilbert PB, Tomaras GD, Haynes BF, Pantaleo G, et al. Immune correlates of vaccine protection against HIV-1 acquisition. Sci Transl Med. 2015;7:310rv7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitrov DS. Therapeutic antibodies, vaccines and antibodyomes. MAbs. 2010;2:347–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doria-Rose NA, Joyce MG. Strategies to guide the antibody maturation process. Curr Opin Virol. 2015;11:137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubé K, Henderson GE, Margolis DM. Framing expectations in early HIV cure research. Trends Microbiol. 2014;22:547–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubé K, Ramirez C, Handibode J, Taylor J, Skinner A, et al. Participation in HIV cure-related research: a scoping review of the proxy literature and implications for future research. J Virus Erad. 2015;1:250–6.

    PubMed  PubMed Central  Google Scholar 

  • Ensoli B, Fiorelli V, Ensoli F, Cafaro A, Titti F, et al. Candidate HIV-1 Tat vaccine development: from basic science to clinical trials. AIDS. 2006;20:2245–61.

    Article  PubMed  Google Scholar 

  • Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, et al. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS. 2008;22:2207–9.

    Article  CAS  PubMed  Google Scholar 

  • Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, et al. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine. 2009;28:371–8.

    Article  CAS  PubMed  Google Scholar 

  • Ensoli B, Bellino S, Tripiciano A, Longo O, Francavilla V, et al. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One. 2010;5:e13540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ensoli F, Cafaro A, Casabianca A, Tripiciano A, Bellino S, et al. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: Results of a randomized phase II exploratory clinical trial. Retrovirology. 2015;12:33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ensoli B, Nchabeleng M, Ensoli F, Tripiciano A, Bellino S, et al. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial. Retrovirology. 2016a;13:34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ensoli B, Cafaro A, Amicosante M, Andrieu J-M, Boyer JD, Garcia F, Gray G, King MR, Rios A, Sandstorm E, Van Regenmortel MHV. Old and new concepts and strategies in HIV vaccinology: a report from a Workshop held in Rome on 17 June 2016. J AIDS Clin Res. 2016b;7(11):634. https://doi.org/10.4172/2155-6113.1000634.

    Article  Google Scholar 

  • Esparza J. A brief history of the global effort to develop an HIV vaccine. Vaccine. 2013a;31:3502–18. https://doi.org/10.1016/j.vaccine.2013.05.018.

    Article  PubMed  Google Scholar 

  • Esparza J. A new scientific paradigm may be needed to finally develop an HIV vaccine. Front Immunol. 2015;6:124. https://doi.org/10.3389/fimmu.2015.00124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esparza J, Bhamarapravati N. Accelerating the development and future availability of HIV-1 vaccines: why, when, where and how? Lancet. 2000;355:2061–6.

    Article  CAS  PubMed  Google Scholar 

  • Esparza J, Yamada T. The discovery value of "Big Science". J Exp Med. 2007;204:701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauci AS. Host factors and the pathogenesis of HIV-induced disease. Nature. 1996;384:529–34.

    Article  CAS  PubMed  Google Scholar 

  • García F, Climent N, Guardo AC, Gil C, León A, et al. A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med. 2013;5:166ra2.

    PubMed  Google Scholar 

  • Guenter D, Esparza J, Macklin R. Ethical considerations in International HIV vaccine trials: summary of a consultative process conducted by the joint United Nations programme on HIV/AIDS (UNAIDS). J Med Ethics. 2000;26:37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke T, Goonetilleke N, McMichael AJ, Dorrell L. Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J Gen Virol. 2007;88:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science. 2013;340(6135):1237874. https://doi.org/10.1126/science.1237874.

    Article  CAS  PubMed  Google Scholar 

  • Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, et al. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science. 2016;351:714–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson GE. The ethics of HIV "cure" research: what can we learn from consent forms? AIDS Res Hum Retrovir. 2015;31:56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong L, Sattentau QJ. Antigenicity and immunogenicity in HIV-1 antibody-based vaccine design. J AIDS Clin Res. 2012. https://doi.org/10.4172/2155-6113.

  • Largent E. For love and money: the need to rethink benefits in HIV cure studies. J Med Ethics. 2017;43:96–9.

    Article  PubMed  Google Scholar 

  • Longo O, Tripiciano A, Fiorelli V, Bellino S, Scoglio A, et al. Phase I therapeutic trial of the HIV-1 Tat protein and long term follow-up. Vaccine. 2009;27:3306–12.

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Wu X, Lu Y, Guo W, Andrieu JM. Therapeutic dendritic-cell vaccine for simian AIDS. Nat Med. 2003;9:27–32.

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Arraes LC, Ferreira WT, Andrieu JM. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med. 2004;10:1359–65.

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Chen S, Lai C, Guo W, Andrieu J-M. Induction of CD8+ regulatory T cells protects macaques against SIV challenge. Cell Rep. 2012;2:1736–46. https://doi.org/10.1016/j.celrep.2012.11.016.

    Article  CAS  PubMed  Google Scholar 

  • Maggiorella MT, Baroncelli S, Michelini Z, Fanales-Belasio E, Moretti S, et al. Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys. Vaccine. 2004;22:3258–69.

    Article  CAS  PubMed  Google Scholar 

  • Mills E, Cooper C, Guyatt G, Gilchrist A, Rachlis B, et al. Barriers to participating in an HIV vaccine trial: a systematic review. AIDS. 2004;18:2235–42.

    Article  PubMed  Google Scholar 

  • Monini P, Cafaro A, Srivastava IK, Moretti S, Sharma VA, et al. HIV-1 Tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes with neutralization by anti-HIV antibodies. PLoS One. 2012;7:e48781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberle CS, Joos B, Rusert P, et al. Tracing HIV-1 transmission: envelope traits of HIV-1 transmitter and recipient pairs. Retrovirology. 2016;13:62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pejchal R, Wilson IA. Structure-based vaccine design in HIV: blind men and the elephant? Curr Pharm Des. 2010;16:3744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361:2209–20.

    Article  CAS  PubMed  Google Scholar 

  • Rezza G, Fiorelli V, Dorrucci M, Ciccozzi M, Tripiciano A, et al. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters. J Infect Dis. 2005;191:1321–4.

    Article  PubMed  Google Scholar 

  • Rios A, Poteet EC, Siwak EB, Anderson DW, Yao QC. HIV inactivation: time for a second look. AIDS. 2015;29:129–31.

    Article  PubMed  Google Scholar 

  • Rios A, Pottet EC, Siwak EB, Anderson DW, Yao QC. The human immune response to HIV and its impact in the potential development of an inactivated HIV vaccine. AIDS Rev. 2016;18:151–7.

    PubMed  Google Scholar 

  • Sandstrom E, Nilsson C, Hejdeman B, Brave A, Bratt G, et al. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J Infect Dis. 2008;198:1482–90.

    Article  PubMed  Google Scholar 

  • Seo HS. Application of radiation technology in vaccines development. Clin Exp Vaccine Res. 2015;4:145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard H. Inactivated-or killed-virus HIV/AIDS vaccines. Curr Drug Targets Infect Disord. 2005;5:131–41.

    Article  CAS  PubMed  Google Scholar 

  • Sheppard HW, Dorman BP. Time for a systematic look at inactivated HIV vaccines. AIDS. 2015;29:125–7.

    Article  PubMed  Google Scholar 

  • UNAIDS. Joint United Nations Programme on HIV/AIDS (UNAIDS), AIDS by the Numbers. Geneva, Switzerland; 2015. http://www.unaids.org/sites/default/files/media_asset/AIDS_by_the_numbers_2015_en.pdf

  • Van Regenmortel MHV. Biological complexity emerges from the ashes of genetic reductionism. J Mol Recognit. 2004a;17:145–8.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV. Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch Virol. 2012a;157:1–20.

    Article  CAS  PubMed  Google Scholar 

  • Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol. 2012b;3:194. https://doi.org/10.3389/fimmu.2012.00194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Regenmortel MHV. Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit. 2014a;27:627–39.

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV. Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. Int J Mol Sci. 2016b;17:1591–625. https://doi.org/10.3390/ijms17091591.

    Article  PubMed Central  Google Scholar 

  • Wertheimer A. Rethinking the ethics of clinical research: widening the lens. New York: Oxford University Press; 2011.

    Google Scholar 

  • Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P, Wang Y, Zhang MY, Longo NS, Dimitrov DS. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem Biophys Res Commun. 2009;390:404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Regenmortel, M.H.V. (2019). Old and New Concepts and Strategies in HIV Vaccinology: A Report from a Workshop Held in Rome on 17 June 2016. In: HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design. Springer, Cham. https://doi.org/10.1007/978-3-030-32459-9_20

Download citation

Publish with us

Policies and ethics