Skip to main content

Relationships Between Dilemma Strength and Fixation Properties in Coevolutionary Games

  • Conference paper
  • First Online:
  • 1276 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1074))

Abstract

Whether or not cooperation is favored over defection in evolutionary games can be assigned by structure coefficients for any arrangement of cooperators and defectors on any network modeled as a regular graph. We study how these structure coefficients relate to a scaling of dilemma strength in social dilemma games. It is shown that some graphs permit certain arrangements of cooperators and defectors to possess particularly large structure coefficients. Moreover, these large coefficients imply particularly large sections of a bounded parameter plane spanned by a scaling of gamble–intending and risk–averting dilemma strength.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen, B., Nowak, M.A.: Games on graphs. EMS Surv. Math. Sci. 1, 113–151 (2014)

    Article  MathSciNet  Google Scholar 

  2. Allen, B., Lippner, G., Chen, Y.T., Fotouhi, B., Momeni, N., Yau, S.T., Nowak, M.A.: Evolutionary dynamics on any population structure. Nature 544, 227–230 (2017)

    Article  Google Scholar 

  3. Broom, M., Rychtar, J.: Game-Theoretical Models in Biology. Chapman and Hall, Boca Raton (2013)

    Book  Google Scholar 

  4. Chen, Y.T.: Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann. Appl. Probab. 3, 637–664 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y.T., McAvoy, A., Nowak, M.A.: Fixation probabilities for any configuration of two strategies on regular graphs. Sci. Rep. 6, 39181 (2016)

    Article  Google Scholar 

  6. Hindersin, L., Traulsen, A.: Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics. PLoS Comput. Biol. 11, e1004437 (2015)

    Article  Google Scholar 

  7. Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, Cambridge (2006)

    Book  Google Scholar 

  8. Perc, M., Szolnoki, A.: Coevolutionary games - a mini review. BioSystems 99, 109–125 (2010)

    Article  Google Scholar 

  9. Richter, H.: Analyzing coevolutionary games with dynamic fitness landscapes. In: Ong, Y.S. (ed.), Proceedings of IEEE Congress on Evolutionary Computation, IEEE CEC 2016, pp. 609–616. IEEE Press, Piscataway (2016)

    Google Scholar 

  10. Richter, H.: Dynamic landscape models of coevolutionary games. BioSystems 153–154, 26–44 (2017)

    Article  Google Scholar 

  11. Richter, H.: Properties of network structures, structure coefficients, and benefit-to-cost ratios. BioSystems 180, 88–100 (2019)

    Article  Google Scholar 

  12. Richter, H.: Fixation properties of multiple cooperator configurations on regular graphs. Theory Biosci. 138(2), 261–275 (2019)

    Google Scholar 

  13. Shakarian, P., Roos, P., Johnson, A.: A review of evolutionary graph theory with applications to game theory. BioSystems 107, 66–80 (2012)

    Article  Google Scholar 

  14. Szabo, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)

    Article  MathSciNet  Google Scholar 

  15. Tanimoto, J.: A simple scaling of the effectiveness of supporting mutual cooperation in donor-recipient games by various reciprocity mechanisms. BioSystems 96, 29–34 (2009)

    Article  Google Scholar 

  16. Tarnita, C.E., Ohtsuki, H., Antal, T., Fu, F., Nowak, M.A.: Strategy selection in structured populations. J. Theor. Biol. 259, 570–581 (2009)

    Article  MathSciNet  Google Scholar 

  17. Taylor, P.D., Day, T., Wild, G.: Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007)

    Article  Google Scholar 

  18. Wang, Z., Kokubo, S., Jusup, M., Tanimoto, J.: Universal scaling for the dilemma strength in evolutionary games. Phys. Life Rev. 14, 1–30 (2015)

    Article  Google Scholar 

  19. Zukewich, J., Kurella, V., Doebeli, M., Hauert, C.: Consolidating birth-death and death-birth processes in structured populations. PLoS One 8, e54639 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Richter, H. (2020). Relationships Between Dilemma Strength and Fixation Properties in Coevolutionary Games. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2019. Advances in Intelligent Systems and Computing, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-030-32456-8_27

Download citation

Publish with us

Policies and ethics