Skip to main content

Frequency Offset and Phase Noise

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Multicarrier systems are widely used due to their high spectral efficiency and robustness against frequency-selective channels. However, the performance of these systems is highly affected by carrier frequency offset (CFO) and phase noise (PN), since the orthogonality between carriers is lost. As these imperfections are mostly related to local oscillator quality and user mobility, low-cost and high-speed applications are critical. The estimation of CFO and phase noise is divided into two steps, acquisition and tracking, where known sequences (or pilot symbols) are used to estimate the parameters at the receiver. The multiuser case is more challenging since the problem is multi-parametric, i.e., it is necessary to estimate the CFO and phase noise of each user. While the compensation of these imperfections is quite simple in the single user case (downlink), it is more elaborated in a multiuser access condition (uplink). Successive interference cancellation or linear suppression techniques are therefore used for CFO and phase noise cancellation in the multiuser case. In this chapter we first describe the effects of the CFO and the phase noise in the system performance, paying special attention to critical applications, such as low-cost unstable oscillators and high-speed vehicles. Then, we introduce several CFO estimation techniques for the downlink (single user case), based on statistical properties of the sequence of pilot symbols. Finally, we present estimation and compensation strategies for the uplink (multiuser case) of orthogonal frequency division multiple access (OFDMA) and multiuser filter bank multicarrier (FBMC), using direct and successive interference cancellation algorithms. The performance of the compensation is evaluated considering high and low mobility scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Syrjälä, M. Valkama, Analysis and mitigation of phase noise and sampling jitter in OFDM radio receivers. Int. J. Microw. Wirel. Technol. 2(2), 193–202 (2010)

    Article  Google Scholar 

  2. F. Horlin, A. Bourdoux, Digital Compensation for Analog Front-Ends (John Wiley & Sons, Hoboken, 2008)

    Book  Google Scholar 

  3. S. Talbot, B. Farhang-Boroujeny, Time-varying carrier offsets in mobile OFDM. IEEE Trans. Commun. 57, 2790–2798 (2009)

    Article  Google Scholar 

  4. G. González, F. Gregorio, J. Cousseau, R. Wichman, S. Werner, Uplink CFO compensation for FBMC multiple access and OFDMA in a high mobility scenario. Phys. Commun. Elsevier 11, 56–66 (2014)

    Article  Google Scholar 

  5. D. Petrovic, W. Rave, G. Fettweis, Effects of phase noise on OFDM systems with and without PLL: characterization and compensation. IEEE Trans. Commun. 55(8), 1607–1616 (2007)

    Article  Google Scholar 

  6. T. Schenk, RF Impairments in Multiple Antenna OFDM: Influence and Mitigation (Technische Universitet Eindhoven, Eindhoven, 2006)

    Google Scholar 

  7. T.M. Schmidl, D.C. Cox, Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 45(12), 1613–1621 (1997)

    Article  Google Scholar 

  8. P. Moose, A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun. 10, 2908–2914 (1994)

    Article  Google Scholar 

  9. M. Morelli, U. Mengali, Carrier-frequency estimation for transmissions over selective channels. IEEE Trans. Commun. 48(9), 1580–1589 (2000)

    Article  Google Scholar 

  10. B. Yang, K. Letaief, R. Cheng, Z. Cao, Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling. IEEE Trans. Commun. 49, 467–479 (2001)

    Article  Google Scholar 

  11. F. Classen, H. Meyr, Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels, in Proceedings of IEEE Vehicular Technology Conference (VTC), vol. 3 (1994), pp. 1655–1659

    Google Scholar 

  12. F. Daffara, O. Adami, A novel carrier recovery technique for orthogonal multicarrier systems. Eur. Trans. Telecommun. 7(4), 323–334 (1996)

    Article  Google Scholar 

  13. IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems, amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1. IEEE Std. 802.16 (2005)

    Google Scholar 

  14. 3rd Generation partnership project (3GPP) LTE; evolved universal terrestrial radio access (E-UTRA); physical layer procedures; (release 13), 3GPP TS 36.213 V13.2.0 (2016)

    Google Scholar 

  15. M. Ghogho, A. Swami, Unified framework for a class of frequency-offset estimation techniques for OFDM, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4 (2004), pp. iv–361–iv–364

    Google Scholar 

  16. M. Morelli, U. Mengali, An improved frequency offset estimator for OFDM applications. IEEE Commun. Lett. 3(3), 75–77 (1999)

    Article  Google Scholar 

  17. H. Minn, P. Tarasak, V.K. Bhargava, OFDM frequency offset estimation based on BLUE principle, in IEEE Vehicular Technology Conference (VTC), vol. 2 (2002), pp. 1230–1234

    Google Scholar 

  18. G. González, F. Gregorio, J. Cousseau, S. Werner, R. Wichman, Data-aided CFO estimators based on the averaged cyclic autocorrelation. Signal Process. EURASIP 93(1), 217–229 (2013)

    Article  Google Scholar 

  19. V. Syrjälä, M. Valkama, N.N. Tchamov, J. Rinne, Phase noise modelling and mitigation techniques in OFDM communications systems, in 2009 Wireless Telecommunications Symposium (2009), pp. 1–7

    Google Scholar 

  20. V. Syrjälä, M. Valkama, Iterative Receiver Signal Processing for Joint Mitigation of Transmitter and Receiver Phase Noise in OFDM-Based Cognitive Radio Link (IEEE, Piscataway, 2012)

    Google Scholar 

  21. P. Mathecken, S. Werner, T. Riihonen, R. Wichman, Subspace-based phase noise estimation in OFDM receivers, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), pp. 3227–3231

    Google Scholar 

  22. P.J. Mathecken, OFDM under Oscillator Phase Noise: Contributions to Analysis and Estimation Methods, Ph.D. Thesis, Department of Signal Processing and Acoustics, Aalto University (2016)

    Google Scholar 

  23. M.-O. Pun, M. Morelli, C.C. Jay Kuo, Multi-Carrier Techniques For Broadband Wireless Communications: A Signal Processing Perspectives (Imperial College Press, London, 2007)

    Book  Google Scholar 

  24. PHYDYAS deliverable D3.1, Equalization and demodulation in the receiver (single antenna), in PHYsical layer for DYnamic AccesS and cognitive radio (2009)

    Google Scholar 

  25. Z. Cao, U. Tureli, Y.-D. Yao, Deterministic multiuser carrier-frequency offset estimation for interleaved OFDMA uplink. IEEE Trans. Commun. 52(9), 1585–1594 (2004)

    Article  Google Scholar 

  26. M.-O. Pun, M. Morelli, and C.-C.J. Kuo, Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions. IEEE Trans. Commun. 54(4), 726–736 (2006)

    Article  Google Scholar 

  27. J. Choi, C. Lee, H.W. Jung, Y.H. Lee, Carrier frequency offset compensation for uplink of OFDM-FDMA systems. IEEE Commun. Lett. 4(12), 414–416 (2000)

    Article  Google Scholar 

  28. D. Huang, K.B. Letaief, An interference-cancellation scheme for carrier-frequency offsets correction in OFDMA systems. IEEE Trans. Commun. 53(1), 203–204 (2005)

    Google Scholar 

  29. S. Manohar, D. Sreedhar, V. Tikiya, A. Chockalingam, Cancellation of multiuser interference due to carrier frequency offsets in uplink OFDMA. IEEE Trans. Wireless Commun. 6(7), 2560–2571 (2007)

    Article  Google Scholar 

  30. T. Yücek, H. Arslan, Carrier frequency offset compensation with successive cancellation in uplink OFDMA systems. IEEE Trans. Wireless Commun. 6(10), 3546–3551 (2007)

    Article  Google Scholar 

  31. P. Sun, L. Zhang, Low complexity iterative interference cancelation for OFDMA uplink with carrier frequency offsets, in Proceedings of the 15th Asia-Pacific conference on Communications (2009), pp. 390–393

    Google Scholar 

  32. Z. Cao, U. Tureli, Y.-D. Yao, Low-complexity orthogonal spectral signal construction for generalized OFDMA uplink with frequency synchronization errors. IEEE Trans. Veh. Technol. 56(3), 1143–1154 (2007)

    Article  Google Scholar 

  33. G. González, F. Gregorio, J. Cousseau, CFO compensation for OFDMA systems using circular banded matrices. Lat. Am. Appl. Res. (SPECIAL ISSUE – RPIC 2011) 43(3), 255–260 (2014)

    Google Scholar 

  34. G. Chen, Y. Zhu, K.B. Letaief, Combined MMSE-FDE and interference cancellation for uplink SC-FDMA with carrier frequency offsets, in Proceedings of IEEE International Conference on Communications (2010), pp. 1–5

    Google Scholar 

  35. R. Fa, L. Zhang, R. Ramirez, A low-complexity grouped MMSE interference cancellation scheme for OFDMA uplink systems with carrier frequency offsets, in Proceedings of IEEE Wireless Communications and Networking Conference (2011), pp. 1602–1606

    Google Scholar 

  36. C.-Y. Hsu, W.-R. Wu, A low-complexity zero-forcing CFO compensation scheme for OFDMA uplink systems. IEEE Trans. Wireless Commun. 7(10), 3657–3661 (2008)

    Article  Google Scholar 

  37. K. Lee, S.-R. Lee, S.-H. Moon, I. Lee, MMSE-based CFO compensation for uplink OFDMA systems with conjugate gradient. IEEE Trans. Wireless Commun. 11(8), 2767–2775 (2012)

    Google Scholar 

  38. J.A. Fessler, A.O. Hero, Space-alternating generalized expectation-maximization algorithm. IEEE Trans. Signal Process. 42(10), 2664–2677 (1994)

    Article  Google Scholar 

  39. L. Bai, Q. Yin, Frequency synchronization for the OFDMA uplink based on the tile structure of IEEE 802.16e. IEEE Trans. Veh. Technol. 61(5), 2348–2353 (2012)

    Article  Google Scholar 

  40. H. Saeedi-Sourck, Y. Wu, J.W.M. Bergmans, S. Sadri, B. Farhang-Boroujeny, Complexity and performance comparison of filter bank multicarrier and OFDM in uplink of multicarrier multiple access networks. IEEE Trans. Signal Process. 59(4), 1907–1912 (2011)

    Article  Google Scholar 

  41. P. Siohan, C. Siclet, N. Lacaille, Analysis and design of OFDM/OQAM systems based on filterbank theory. IEEE Trans. Signal Process. 50(5), 1170–1183 (2002)

    Article  Google Scholar 

  42. H. Holma, A. Toskala, LTE for UMTS – OFDMA and SC-FDMA Based Radio Access, 1st edn. (Wiley, Hoboken, 2009)

    Google Scholar 

  43. 3rd Generation partnership project (3GPP) technical specification group radio access network; physical layer aspects for evolved universal terrestrial radio access (UTRA) (release 7), 3GPP TR 25.814, V7.1.0 (2006)

    Google Scholar 

  44. E. Dahlman, S. Parkvall, J. Sköld, P. Beming, 3G Evolution HSPA and LTE for Mobile Broadband, 2st edn. (Elsevier, Amsterdam, 2008)

    Google Scholar 

  45. IEEE Standard for local and metropolitan area networks part 16: air interface for fixed broadband wireless access systems, IEEE Std 802.16-2004 (Revision of IEEE Std 802.16-2001) (2004), pp. 01–857

    Google Scholar 

  46. IEEE Standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems, amendment 3: Advanced air interface, IEEE Std. 802.16m (2011)

    Google Scholar 

  47. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed. (The Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  48. G. González, F. Gregorio, J. Cousseau, C. Muravchik, Analysis of the CFO successive interference cancellation for the OFDMA uplink. Springer Wirel. Pers. Commun. 91(2), 989–1002 (2016)

    Article  Google Scholar 

  49. PHYDYAS deliverable D5.1: Prototype filter and structure optimization, PHYsical layer for DYnamic AccesS and Cognitive Radio (2008)

    Google Scholar 

  50. N.J. Fliege, Computational efficiency of modified DFT polyphase filter banks, in Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, vol. 2 (1993), pp. 1296–1300

    Google Scholar 

  51. ITU-R, Guidelines for evaluation of radio transmission technologies for IMT-2000. Recomm. ITUR M1225 93(3), 148–56 (1997)

    Google Scholar 

  52. LTE; evolved universal terrestrial radio access (E-UTRA); base station (BS) radio transmission and reception (2012)

    Google Scholar 

  53. 3rd Generation partnership project (3GPP) technical specification group radio access network; physical layer aspects for evolved universal terrestrial radio access (UTRA) (release 7) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregorio, F., González, G., Schmidt, C., Cousseau, J. (2020). Frequency Offset and Phase Noise. In: Signal Processing Techniques for Power Efficient Wireless Communication Systems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-32437-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32437-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32436-0

  • Online ISBN: 978-3-030-32437-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics