Skip to main content

Abstract

Conventionally, the power amplifier is considered the most power demanding device in a wireless transceiver. Following this assumption, improvements in the power efficiency of the power amplifier (PA) are directly reflected in the power consumption of the overall system. Considering the power consumption of a LTE macrocell base station , the PA drains around 57% of the total power, while the baseband processing requires only 13%. However, in a femtocell , the PA consumption represents only 22% of the total power and the portion of the digital block demands 47%. For the case of power limited devices, as a LTE mobile phone, the PA dominates the overall power consumption requiring 44% of the total available power. We can infer from these values that for high/medium power systems, as macrocell base stations, the implementation of linearization techniques or peak-to-average power ratio (PAPR) reduction methods are mandatory. In that case, their implementation allows to relax the linearity constraints and improve the power efficiency. A substantial energy saving can thus be obtained in that scenario. On the other hand, for low power transceivers , the trade-off between the energy saved by optimizing the PA operation point and the energy required to implement predistortion techniques needs to be carefully evaluated. In this chapter, we address the problem of power consumption in power amplifiers and their effects over energy efficiency and performance of a wireless transceiver. The trade-off between the allowed power amplifier distortion and the system power efficiency is studied. Several nonlinear distortion compensation techniques that can be applied either in the receiver or the transmitter side are introduced and their performance is studied for several scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.M. Lavrador, T.R. Cunha, P.M. Cabral, J.C. Pedro, The linearity-efficiency compromise. IEEE Microw. Mag. 11(5), 44–58 (2010)

    Article  Google Scholar 

  2. P. Kenington, High-Linearity RF Amplifier Design (Artech House, Norwood, 2000)

    Google Scholar 

  3. S. Cripps, Advanced Techniques in RF Power Amplifiers Design (Artech, Norwood, 2002)

    Google Scholar 

  4. F. Giannini, E. Limiti, P. Colantonio, High Efficiency RF & Microwave Solid State Power Amplifiers (John Wiley & Sons, Hoboken, 2009)

    Google Scholar 

  5. B. Berglund, T Nygren, K. Sahlman, RF multicarrier amplifier for third generation systems. Ericsson Rev. 78(4), 184–189 (2001)

    Google Scholar 

  6. P.K. Singya, N. Kumar, V. Bhatia, Mitigating NLD for wireless networks: effect of nonlinear power amplifiers on future wireless communication networks. IEEE Microw. Mag. 18(5), 73–90 (2017)

    Article  Google Scholar 

  7. J. Joung, C.K. Ho, K. Adachi, S. Sun, A survey on power-amplifier-centric techniques for spectrum- and energy-efficient wireless communications. IEEE Commun. Surv. Tutorials 17(1), 315–333 (2015). First quarter

    Article  Google Scholar 

  8. A. Katz, J. Wood, D. Chokola, The evolution of PA linearization: from classic feedforward and feedback through analog and digital predistortion. IEEE Microw. Mag. 17(2), 32–40 (2016)

    Article  Google Scholar 

  9. G. Wunder, R.F.H. Fischer, H. Boche, S. Litsyn, J. No, The PAPR problem in OFDM transmission: new directions for a long-lasting problem. IEEE Signal Process. Mag. 30(6), 130–144 (2013)

    Article  Google Scholar 

  10. J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 37(23), 1417–1418 (2001)

    Article  Google Scholar 

  11. D. Morgan, Z. Ma, J. Kim, M. Zierdt, J. Pastalan, A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Process. 54(10), 3852–3860 (2006)

    Article  MATH  Google Scholar 

  12. P. Jaraut, M. Rawat, P. Roblin, Digital predistortion technique for low resource consumption using carrier aggregated 4G/5G signals. IET Microwaves Antennas Propag. 13(2), 197–207 (2019)

    Article  Google Scholar 

  13. O. Hammi, S. Buomaiza, F. Ghannouchi, On the robustness of digital predistortion function synthesis and average power tracking for highly nonlinear power amplifiers. IEEE Trans. Microwave Theory Tech. 55(6), 1382–1389 (2007)

    Article  Google Scholar 

  14. S. Mann, M. Beach, P. Warr, J. McGeehan, Increasing the talk-time of mobile radios with efficient linear transmitter architectures. Electron. Commun. Eng. J. 13(2), 65–76 (2001)

    Article  Google Scholar 

  15. E. Aschbacher, M. Rupp, Modeling and identification of a nonlinear power-amplifier with memory for nonlinear digital adaptive pre-distortion, in Proceedings of IEEE Signal Processing Advances in Wireless Communications, SPAWC 2003, Rome, vol. 1 (2003), pp. 658–662

    Google Scholar 

  16. L. Guan, A. Zhu, Green communications: digital predistortion for wideband RF power amplifiers. IEEE Microw. Mag. 15(7), 84–99 (2014)

    Article  Google Scholar 

  17. C. Eun, E.J. Powers, A new Volterra predistorter based on the indirect learning architecture. IEEE Trans. Signal Process. 45(1), 223–227 (1997)

    Article  Google Scholar 

  18. L. Ding, G.T. Zhou, D.R. Morgan, Z. Ma, J.S. Kenney, J. Kim, C.R. Giardina, A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)

    Article  Google Scholar 

  19. P. Gilabert, G. Montoro, E. Bertran, On the Wiener and Hammerstein models for power amplifier predistortion, in Proceedings of Asia-Pacific Microwave Conference (APMC) (2005)

    Google Scholar 

  20. F. Gregorio, S. Werner, J. Cousseau, T. Laakso, Receiver cancellation technique for nonlinear power amplifier distortion in SDMA-OFDM systems. IEEE Trans. Vehic. Tech. 56(5) Part I, 2499–2516 (2007)

    Article  Google Scholar 

  21. F. Gregorio, Analysis and compensation of nonlinear power amplifier effects in multi-antenna OFDM systems, Ph.D. Thesis, Helsinki University of Technology (2007)

    Google Scholar 

  22. E. Olfat, M. Bengtsson, Joint channel and clipping level estimation for OFDM in IoT-based networks. IEEE Trans. Signal Process. 65(18), 4902–4911 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. L.D. Quach, S.P. Stapleton, A postdistortion receiver for mobile communications. IEEE Trans. Veh. Technol. 42(4), 604–616 (1993)

    Article  Google Scholar 

  24. S.P. Stapleton, L. Quach, Reduction of adjacent channel interference using postdistortion, in Proceedings of IEEE Vehicular Technology Conference, VTC’02-Fall, Vancouver, vol. 2 (1992), pp. 915–918

    Google Scholar 

  25. C.H. Lee, V. Postoyalko, T. O’Farrell, Enhanced performance of ROF link for cellular mobile systems using postdistortion compensation, in Proceedings of IEEE Personal, Indoor and Mobile Radio Communications, PIMRC 2004, Barcelona, vol. 4 (2004), pp. 2772–2776

    Google Scholar 

  26. J. Macdonald, Nonlinear distortion reduction by complementary distortion. IRE Trans. Audio 7(5), 128–133 (1959)

    Article  Google Scholar 

  27. M. Aziz, M.V. Amiri, M. Helaoui, F.M. Ghannouchi, Statistics-based approach for blind post-compensation of modulator’s imperfections and power amplifier nonlinearity. IEEE Trans. Circuits Syst. Regul. Pap. 66(3), 1063–1075 (2019)

    Article  Google Scholar 

  28. D.D. Falconer, Adaptive equalization of channel nonlinearities in QAM data transmission systems. Bell Syst. Tech. 57, 2589–2611 (1978)

    Article  MATH  Google Scholar 

  29. S. Benedetto, E. Biglieri, Nonlinear equalization of digital satellite channels. IEEE J. Sel. Areas Commun. 1(1), 57–62 (1983)

    Article  Google Scholar 

  30. S. Benedetto, A. Gersho, R.D. Gitlin, T.L. Lim, Adaptive cancellation of nonlinear intersymbol interference for voiceband data transmission. IEEE J. Sel. Areas Commun. 2(5), 765–777 (1984)

    Article  Google Scholar 

  31. D. Kim, G.L. Stuber, Clipping noise mitigation for OFDM by decision-aided reconstruction. IEEE Commun. Lett. 3(1), 4–6 (1999)

    Article  Google Scholar 

  32. J. Tellado, L.M.C. Hoo, J.M. Cioffi, Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative decoding. IEEE Trans. Commun. 51, 218–228 (2003)

    Article  Google Scholar 

  33. Y. Xiao, S. Li, X. Lei, Y. Tang, Clipping noise mitigation for channel estimation in OFDM systems. IEEE Commun. Lett. 10(6), 474–476 (2006)

    Article  Google Scholar 

  34. H. Chen, A.M. Haimovich, Iterative estimation and cancellation of clipping noise for OFDM signals. IEEE Commun. Lett. 7(7), 305–307 (2003)

    Article  Google Scholar 

  35. R. AliHemmati, P. Azmi, Iterative reconstruction-based method for clipping noise suppression in OFDM systems. IEE Commun. Proc.152(4), 452–456 (2005)

    Article  MATH  Google Scholar 

  36. S.V. Zhidkov, Receiver synthesis for nonlinearly amplified OFDM signal, in Proceedings of IEEE Workshop on Signal Processing Systems, SIPS 2003, Seoul (2003), pp. 387–392

    Google Scholar 

  37. C.A.R. Fernandes, J.C.M. Mota, G. Favier, Analysis and power diversity-based cancellation of nonlinear distortions in OFDM systems. IEEE Trans. Signal Process.60(7), 3520–3531 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. V. del Razo, T. Riihonen, F. Gregorio, S. Werner, R. Wichman, Nonlinear amplifier distortion in cooperative amplify-and-forward OFDM systems, in 2009 IEEE Wireless Communications and Networking Conference (2009), pp. 1–5

    Google Scholar 

  39. H. Bouhadda, R. Zayani, H. Shaiek, D. Roviras, R. Bouallegue, Iterative receiver cancellation of nonlinear power amplifier distortion in FBMC/OQAM system, in 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (2015), pp. 691–695

    Google Scholar 

  40. A.S. Tehrani, H. Cao, A. Behravan, T. Eriksson, C. Fager, Successive cancellation of power amplifier distortion for multiuser detection, in 2010 IEEE 72nd Vehicular Technology Conference – Fall (2010), pp. 1–5

    Google Scholar 

  41. Z. Alina, O. Amrani, On digital post-distortion techniques. IEEE Trans. Signal Process.64(3), 603–614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. F.H. Gregorio, S. Werner, J. Cousseau, J. Figueroa, R. Wichman, Receiver-side nonlinearities mitigation using an extended iterative decision-based technique. Signal Proc. 91(8), 2042–2056 (2011)

    Article  MATH  Google Scholar 

  43. J.K. Cavers, Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements. IEEE Trans. Veh. Technol. (39)(4), 374–382 (2000)

    Article  Google Scholar 

  44. A.A.M. Saleh, J. Salz, Adaptive linearization of power amplifiers in digital radio systems. Bell Syst. Tech. J. 62(4), 1019–1033 (1983)

    Article  Google Scholar 

  45. A.N. D’Andrea, V. Lottici, R. Reggiannini, Nonlinear predistortion of OFDM signals over frequency-selective fading channels. IEEE Trans. Commun. 49(5), 837–843 (2001)

    Article  MATH  Google Scholar 

  46. M. Faulkner, M. Johansson, Adaptive linearization using predistortion-experimental results. IEEE Trans. Veh. Technol. 43(2), 323–332 (1994)

    Article  Google Scholar 

  47. M.Y. Cheong, S. Werner, M.J. Bruno, J.L. Figueroa, J.E. Cousseau, R. Wichman, Adaptive piecewise linear predistorters for nonlinear power amplifiers with memory. IEEE Trans. Circuits Syst. Regul. Pap. 59(7), 1519–1532 (2012)

    Article  MathSciNet  Google Scholar 

  48. J.E. Cousseau, J.L. Figueroa, S. Werner, T.I. Laakso, Efficient nonlinear wiener model identification using a complex-valued simplicial canonical piecewise linear filter. IEEE Trans. Signal Process. 55(5), 1780–1792 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Guo, J.R. Cavallaro, Enhanced power efficiency of mobile OFDM radio using predistortion and post-compensation, in Proceedings of IEEE Vehicular Technology Conference, VTC’02-Fall, Vancouver, vol. 1 (2002), pp. 214–218

    Google Scholar 

  50. M.Y. Cheong, S. Werner, T.I. Laakso, Design of predistorters for power amplifiers in future mobile communications systems, in Nordic Signal Processing Symposium NORSIG’04, Espoo (2004)

    Google Scholar 

  51. H.W. Kang, Y.S. Cho, D.H. Youn, On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter. IEEE Trans. Commun. 47(4), 522–526 (1999)

    Article  Google Scholar 

  52. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (J. Wiley Sons, Hoboken, 1980)

    Google Scholar 

  53. K.F. To, P.C. Ching, K.M. Wong, Compensation of amplifier nonlinearities on wavelet packet division multiplexing, in Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing, ICASSP’01, Utah, vol. 4 (2001), pp. 2669–2672

    Google Scholar 

  54. J. Tsimbinos, K.V. Lever, Nonlinear system compensation based on orthogonal polynomial inverses. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48(4), 406–417 (2006)

    Article  MATH  Google Scholar 

  55. C.H. Tseng, E.J. Powers, Nonlinear channel equalization in digital satellite systems, in Proceedings of IEEE Global Telecommunications Conference, GLOBECOM 1993, Houston, vol. 1 (1993), pp. 1639–1643

    Google Scholar 

  56. E. Biglieri, S. Barberis, M. Catena, Analysis and compensation of nonlinearities in digital transmission systems. IEEE J. Sel. Areas Commun.6(1), 42–51 (1988)

    Article  Google Scholar 

  57. H.W. Kang, Y.S. Cho, D.H. Youn, Adaptive precompensation of Wiener systems. IEEE Trans. Signal Process. 46(10), 2825–2829 (1998)

    Article  Google Scholar 

  58. T. Liu, S. Boumaiza, F.M. Ghannouchi, Pre-compensation for the dynamic nonlinearity of wideband wireless transmitters using augmented Wiener predistorters, in Proceedings of Asia-Pacific Microwave Conference, APMC 2005, Suzhou (2005)

    Google Scholar 

  59. T. Liu, S. Boumaiza, F.M. Ghannouchi, Identification and pre-compensation of the electrical memory effects in wireless transceivers, in Proceedings of IEEE Radio and Wireless Symposium, San Diego (2006), pp. 535–538

    Google Scholar 

  60. R. Raich, H. Qian, G. T. Zhou, Orthogonal polynomials for power amplifier modeling and predistorter design. IEEE Trans. Veh. Technol. 53(5), 1468–1479 (2004)

    Article  Google Scholar 

  61. J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model with memory. IEE Electronics Lett. 37, 1417–1418 (2001)

    Article  Google Scholar 

  62. Y. Liu, J. Zhou, W. Chen, B. Zhou, A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers. IEEE Trans. Ind. Electron. 61(5), 2389–2401 (2014)

    Article  Google Scholar 

  63. N. Kelly, W. Cao, A. Zhu, Preparing linearity and efficiency for 5G: digital predistortion for dual-band Doherty power amplifiers with mixed-mode carrier aggregation. IEEE Microw. Mag. 18(1), 76–84 (2017)

    Article  Google Scholar 

  64. S. Zhang, W. Chen, Z. Feng, Low sampling rate digital predistortion of power amplifier assisted by bandpass RF filter, in 2012 Asia Pacific Microwave Conference Proceedings (2012), pp. 962–964

    Google Scholar 

  65. C. Nader, W. Van Moer, K. Barbe, N. Bjorsell, P. Handel, Harmonic sampling and reconstruction of wideband undersampled waveforms: breaking the code. IEEE Trans. Microwave Theory Tech. 59(11), 2961–2969 (2011)

    Article  Google Scholar 

  66. Q. Zhang, Y. Liu, J. Zhou, W. Chen, A complexity-reduced band-limited memory polynomial behavioral model for wideband power amplifier, in 2015 IEEE International Wireless Symposium (IWS 2015) (2015), pp. 1–4

    Google Scholar 

  67. D. Dardari, V. Tralli, A. Vaccari, A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans. Commun. 48(10), 1755–1764 (2000)

    Article  Google Scholar 

  68. A.A.M. Saleh, Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun. 29(11), 1715–1720 (1981)

    Article  Google Scholar 

  69. L. Ding, G. Zhou, D. Morgan, Z. Ma, J. Kenney, J. Kim, C. Giardina, A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)

    Article  Google Scholar 

  70. K. Gharaibeh, Behavioral modeling of nonlinear power amplifiers using threshold decomposition based piecewise linear approximation. IEEE Radio Wirel. Symp. 755–758 (2008)

    Google Scholar 

  71. A. Zhu, P. Draxler, C. Hsia, T. Brazil, D. Kimball, P. Asbeck, Digital pre distortion for envelope tracking power amplifiers using decomposed piecewise Volterra series. IEEE Trans. Microwave Theory Tech. 56(10), 2237–2247 (2008)

    Article  Google Scholar 

  72. C. Fager, J.C. Pedro, N. Borges de Carvalho, H. Zirath, Prediction of IMD in LDMOS transistor amplifiers using a new large signal model. IEEE Trans. MTT 50(12), 2834–2842 (2002)

    Article  Google Scholar 

  73. C. Fager, J.C. Pedro, N. Borges de Carvalho, H. Zirath, Intermodulation distortion behavior in LDMOS transistor amplifiers. IEEE MTT Digest. 131–134 (2002)

    Google Scholar 

  74. C. Eun, E.J. Powers, A predistorter design for a memory-less nonlinearity preceded by a dynamic linear system, in IEEE GLOBECOM 95, vol. 1 (1995), pp. 152–156

    Google Scholar 

  75. G. Golub, C.F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, 1993)

    MATH  Google Scholar 

  76. A.V. Trushkin, On the design of an optimal quantizer. IEEE Trans. Inf. Theory 39(4), 1180–1194 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  77. C. Hsu, H. Liao, PAPR reduction using the combination of precoding and Mu-Law companding techniques for OFDM systems, in 2012 IEEE 11th International Conference on Signal Processing, vol. 1 (2012), pp. 1–4

    Google Scholar 

  78. A. Hekkala, A. Kotelba, M. Lasanen, Compensation of linear and nonlinear distortions in envelope tracking amplifier, in IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008 (2008), pp. 1–5

    Google Scholar 

  79. A. Kotelba, A. Hekkala, M. Lasanen, Compensation of time misalignment between input signals in envelope-tracking amplifiers, in IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008 (2008), pp. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregorio, F., González, G., Schmidt, C., Cousseau, J. (2020). Power Amplifiers. In: Signal Processing Techniques for Power Efficient Wireless Communication Systems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-32437-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32437-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32436-0

  • Online ISBN: 978-3-030-32437-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics