Skip to main content

Abstract

It is generally assumed that the analog front-end (AFE) dominates the power consumption of the system. However, in low-power applications the digital block can dominate the consumption of the transceiver. Typical scenarios in the upcoming 5G technologies include ultra-dense small-cell networks, where the distance between the base-station and users is small (or even inexistent), such that low power transmission is sufficient. In this context, the digital signal processing power consumption dominates over the analog power dissipation. In order to handle these new scenarios, in addition to the power dissipated in the AFE it is necessary to take into account the power consumption in the baseband processing. For example, the trade-off between the energy consumed to implement channel coding and the energy saved due to code gain needs to be carefully evaluated. Sometimes, the implementation of coding is not useful in terms of energy efficiency. Digital signal processing and AFE power consumption and scaling of the power consumption of the different devices are addressed in this chapter, considering typical system parameters as transmitted power, operation bandwidth, and modulation size. Energy efficiency (EE) and spectral efficiency (SE) are used to assess the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M.A. Imran, D. Sabella, M.J. Gonzalez, O. Blume, A. Fehske, How much energy is needed to run a wireless network? IEEE Wireless Commun. 18(5), 40–49 (2011)

    Article  Google Scholar 

  2. Q. Wu, G.Y. Li, W. Chen, D.W.K. Ng, R. Schober, An overview of sustainable green 5G networks. IEEE Wireless Commun. 24(4), 72–80 (2017)

    Article  Google Scholar 

  3. S. Buzzi, I. Chih-Lin, T.E. Klein, H.V. Poor, C. Yang, A. Zappone, A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J. Sel. Areas Commun. 34(4), 697–709 (2016)

    Article  Google Scholar 

  4. E. Oh, K. Son, B. Krishnamachari, Dynamic base station switching-on/off strategies for green cellular networks. IEEE Trans. Wireless Commun. 12(5), 2126–2136 (2013)

    Article  Google Scholar 

  5. P. Chang, G. Miao, Energy and spectral efficiency of cellular networks with discontinuous transmission. IEEE Trans. Wireless Commun. 16(5), 2991–3002 (2017)

    Article  Google Scholar 

  6. X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(2), 757–789 (2015)

    Article  Google Scholar 

  7. S. Bi, C.K. Ho, R. Zhang, Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53(4), 117–125 (2015)

    Article  Google Scholar 

  8. M. Ariaudo, I. Fijalkow, J.-L. Gautier, M. Brandon, B. Aziz, B. Milevsky, Green radio despite “Dirty RF” front-end. EURASIP J. Wireless Commun. Netw. 2012(1), 146 (2012)

    Google Scholar 

  9. J. Joung, C.K. Ho, S. Sun, Green wireless communications: a power amplifier perspective, in Signal Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific (2012), pp. 1–8

    Google Scholar 

  10. C. Desset, E. De Greef, B. Debaillie, Power model for Today’s and Future Base Stations (2015). http://www.imec.be/powermodel

  11. I. Gomez-Miguelez, V. Marojevic, A. Gelonch, Processing-to-amplifier power ratio for energy efficient communications. Electron. Lett. 48(12), 732–734 (2012)

    Article  Google Scholar 

  12. D.Y.C. Lie, J.C. Mayeda, Y. Li, J. Lopez, A review of 5G power amplifier design at cm-wave and mm-wave frequencies. Wireless Commun. Mobile Comput. 2018, 16 (2018)

    Article  Google Scholar 

  13. G.T. Watkins, K. Mimis, How not to rely on Moore’s law alone: low-complexity envelope-tracking amplifiers. IEEE Microwave Mag. 19(4), 84–94 (2018)

    Article  Google Scholar 

  14. V. Camarchia, M. Pirola, R. Quaglia, S. Jee, Y. Cho, B. Kim, The Doherty power amplifier: review of recent solutions and trends. IEEE Trans. Microwave Theory Tech. 63(2), 559–571 (2015)

    Article  Google Scholar 

  15. J. Kim, J. Son, S. Jee, S. Kim, B. Kim, Optimization of envelope tracking power amplifier for base-station applications. IEEE Trans. Microwave Theory Tech. 61(4), 1620–1627 (2013)

    Article  Google Scholar 

  16. J. Jeong, D.F. Kimball, M. Kwak, C. Hsia, P. Draxler, P.M. Asbeck, Wideband envelope tracking power amplifier with reduced bandwidth power supply waveform, in 2009 IEEE MTT-S International Microwave Symposium Digest (2009), pp. 1381–1384

    Google Scholar 

  17. D. Kang, B. Park, D. Kim, J. Kim, Y. Cho, B. Kim, Envelope-tracking CMOS power amplifier module for LTE applications. IEEE Trans. Microwave Theory Tech. 61(10), 3763–3773 (2013)

    Article  Google Scholar 

  18. G.T. Watkins, K. Mimis, A 65% efficient envelope tracking radio-frequency power amplifier for orthogonal frequency division multiplex. IET Microwaves Antennas Propag. 9(7), 676–681 (2015)

    Article  Google Scholar 

  19. F. Balteanu, H. Modi, S. Khesbak, S. Drogi, P. DiCarlo, Envelope tracking LTE multimode power amplifier with 44% overall efficiency, in 2017 IEEE Asia Pacific Microwave Conference (APMC) (2017), pp. 37–40

    Google Scholar 

  20. Q. Jin, X. Ruan, X. Ren, Y. Wang, Y. Leng, C.K. Tse, Series/parallel form switch-linear hybrid envelope-tracking power supply to achieve high efficiency. IEEE Trans. Ind. Electron. 64(1), 244–252 (2017)

    Article  Google Scholar 

  21. U. Karthaus, D. Sukumaran, S. Tontisirin, S. Ahles, A. Elmaghraby, L. Schmidt, H. Wagner, Fully integrated 39 dBm, 3-stage Doherty PA MMIC in a low-voltage GaAs HBT technology. IEEE Microwave Wireless Compon. Lett. 22(2), 94–96 (2012)

    Article  Google Scholar 

  22. A.M. Mahmoud Mohamed, S. Boumaiza, R.R. Mansour, Doherty power amplifier with enhanced efficiency at extended operating average power levels. IEEE Trans. Microwave Theory Tech. 61(12), 4179–4187 (2013)

    Article  Google Scholar 

  23. K. Nakatani, S. Shinjo, S. Miwa, R. Ma, K. Yamanaka, 3.0–3.6 GHz wideband, over 46% average efficiency GaN Doherty power amplifier with frequency dependency compensating circuit, in 2017 IEEE Radio Wireless Week (RWW) (2017)

    Google Scholar 

  24. I.V. Singh, M.S. Alam, Cascode mixer for multiband wireless, in IMPACT-2013 (2013), pp. 180–184

    Google Scholar 

  25. Energy efficiency analysis of the reference systems, areas of improvements and target breakdown, in EARTH project deliverable, D2.3 (2012)

    Google Scholar 

  26. Distributed and centralized baseband processing algorithms, architectures, and platforms, in MAMMOET project deliverable, D3.2 (2015)

    Google Scholar 

  27. C. Desset, B. Debaillie, F. Louagie, Modeling the hardware power consumption of large scale antenna systems, in 2014 IEEE Online Conference on Green Communications (OnlineGreenComm) (2014), pp. 1–6

    Google Scholar 

  28. M. Lauridsen, L. Noël, T.B. Sorensen, P. Mogensen, An empirical LTE smartphone power model with a view to energy efficiency evolution. Intel Technol. J. 18, 172–193 (2014)

    Google Scholar 

  29. M. Lauridsen, P. Mogensen, L. Noel, Empirical LTE smartphone power model with DRX operation for system level simulations, in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall) (2013), pp. 1–6

    Google Scholar 

  30. A. Mammela, A. Anttonen, Why will computing power need particular attention in future wireless devices? IEEE Circuits Syst. Mag. 17(1), 12–26 (2017)

    Article  Google Scholar 

  31. L.G. Baltar, F. Schaich, M. Renfors, J.A. Nossek, Computational complexity analysis of advanced physical layers based on multicarrier modulation, in 2011 Future Network Mobile Summit (2011), pp. 1–8

    Google Scholar 

  32. C. Desset, A. Fort, Selection of channel coding for low-power wireless systems, in The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring, vol 3 (2003), pp. 1920–1924

    Google Scholar 

  33. A. Bhise, P. Vyavahare, Complexity analysis of iterative decoders in mobile communication systems. Int. J. Inf. Electron. Eng. 4(2), 121–128 (2014)

    Google Scholar 

  34. B. Murmann, The race for the extra decibel: a brief review of current ADC performance trajectories. IEEE Solid-State Circuits Mag. 7(3), 58–66 (2015)

    Article  Google Scholar 

  35. S. Krone, G. Fettweis, Energy-efficient A/D conversion in wideband communications receivers, in 2011 IEEE Vehicular Technology Conference (VTC Fall) (2011), pp. 1–5

    Google Scholar 

  36. T. Sundstrom, B. Murmann, C. Svensson, Power dissipation bounds for high-speed Nyquist analog-to-digital converters. IEEE Trans. Circuits Syst. I Regul. Pap. 56(3), 509–518 (2009)

    Article  MathSciNet  Google Scholar 

  37. Y. Chen, J.A. Nossek, A. Mezghani, Circuit-aware cognitive radios for energy-efficient communications. IEEE Wireless Commun. Lett. 2(3), 323–326 (2013)

    Article  Google Scholar 

  38. A. Mezghani, J.A. Nossek, Power efficiency in communication systems from a circuit perspective, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011), pp. 1896–1899

    Google Scholar 

  39. A. Mezghani, J.A. Nossek, Modeling and minimization of transceiver power consumption in wireless networks, in 2011 International ITG Workshop on Smart Antennas (2011), pp. 1–8

    Google Scholar 

  40. E. Björnson, L. Sanguinetti, J. Hoydis, M. Debbah, Optimal design of energy-efficient multi-user MIMO systems: is massive MIMO the answer? IEEE Trans. Wireless Commun. 14(6), 3059–3075 (2015)

    Article  Google Scholar 

  41. S. Krone, G. Fettweis, Energy-efficient A/D conversion in wideband communications receivers, in 2011 IEEE Vehicular Technology Conference (VTC Fall) (2011), pp. 1–5

    Google Scholar 

  42. M. Sarajli, L. Liu, O. Edfors, When are low resolution ADCs energy efficient in massive MIMO? IEEE Access 5, 14837–14853 (2017)

    Article  Google Scholar 

  43. S. Moon, I. Kim, D. Kam, D. Jee, J. Choi, Y. Lee, Massive MIMO systems with low-resolution ADCs: baseband energy consumption vs. symbol detection performance. IEEE Access 7, 6650–6660 (2019)

    Article  Google Scholar 

  44. E. Bjornson, M. Matthaiou, M. Debbah, Circuit-aware design of energy-efficient massive MIMO systems, in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP) (2014), pp. 101–104

    Google Scholar 

  45. E. Björnson, M. Matthaiou, M. Debbah, Massive MIMO systems with hardware-constrained base stations, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp. 3142–3146

    Google Scholar 

  46. F. Sohrabi, W. Yu, Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Top. Signal Process. 10(3), 501–513 (2016)

    Article  Google Scholar 

  47. I. Ahmed, H. Khammari, A. Shahid, A. Musa, K.S. Kim, E. De Poorter, I. Moerman, A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun. Surv. Tutorials 20(4), 3060–3097 (2018)

    Article  Google Scholar 

  48. F. Gregorio, J. Cousseau, S. Werner, T. Riihonen, R. Wichman, EVM analysis for broadband OFDM direct-conversion transmitters. IEEE Trans. Veh. Technol. 62(7), 3443–3451 (2013)

    Article  Google Scholar 

  49. S.H. Han, J.H. Lee, An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Trans. Wireless Commun. 12(2), 56–65 (2005)

    Article  MathSciNet  Google Scholar 

  50. A.M. Rateb, M. Labana, An optimal low complexity PAPR reduction technique for next generation OFDM systems. IEEE Access 7, 16406–16420 (2019)

    Article  Google Scholar 

  51. A.N. Lozhkin, T. Maniwa, M. Shimizu, Rf front-end architecture for 5G, in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (2018), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregorio, F., González, G., Schmidt, C., Cousseau, J. (2020). Energy Consumption. In: Signal Processing Techniques for Power Efficient Wireless Communication Systems. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-32437-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32437-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32436-0

  • Online ISBN: 978-3-030-32437-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics