Sustainable Rice Straw Management pp 93-109 | Cite as
Rice-Straw Mushroom Production
- 1 Mentions
- 21k Downloads
Abstract
The rice-straw mushroom (Volvariella volvacea) has a distinct flavor, pleasant taste, and rich protein content. It has low production costs and a cropping duration of approximately 45 days—making it an effective means for poverty alleviation for those farmers who grow it. Farmers in Vietnam, the Philippines, and Cambodia grow it. Rice straw is one of the most common substrates used for growing this mushroom. The mushroom can grow well in both outdoor and indoor conditions; however, outdoor cultivation has risks of exposure to rain, wind, and/or high temperatures, all which reduce yield. The yield of indoor mushroom production is higher and more stable, as such, indoor growing is preferred. In addition to cultivation, this chapter also covers straw mushroom characteristics, cultivation principles and techniques, and rice straw substrate preparation.
Keywords
Rice-straw mushroom Indoor cultivation Outdoor cultivation6.1 Overview of Rice-Straw Mushroom (RSM)
Volvariella volvacea (Bull.; Fr.) Singer is an edible mushroom also known as the straw mushroom and, for our purposes, the rice-straw mushroom (RSM)
RSM production adds value to rice production and increases the income of the poor farmers in developing countries (Imtiaj and Rahman 2008; Shakil et al. 2014; Zhang et al. 2014).
Among more than 38,000 known mushroom species, such as Agaricus bisporus, Lentinus edodes, Flammulna velutipis, Auricularia polytricha, etc., RSM is one of the most common mushrooms cultivated (Walde et al. 2006) and ranks third among important mushrooms due to its delicious taste (Ramkumar et al. 2012; Thiribhuvanamala et al. 2012), as well as its short growing time compared to other species (Rajapakse 2011). In terms of production, RSM ranks sixth among edible mushrooms, accounting for about 5–6% of world production (Ahlawat et al. 2011).
Chemical composition of RSM
Content | Unit | Value |
---|---|---|
Moisture content | % in wet basis | 88–91.1 |
Crude protein | % of dry weight | 30–43 |
Crude fat | % of dry weight | 1–6 |
Fiber | % of dry weight | 4–10 |
Ash | % of dry weight | 5–13 |
Carbohydrate | % of dry weight | 12–49.3 |
Energy value | Kcal/kg of dry weight | 2760 |
Due to its many benefits and advantages, mushroom production and consumption have significantly increased in many countries (Vizhanyo and Jozsef 2000; Bernaś et al. 2006). The top mushroom producers are China, USA, and The Netherlands, contributing 47%, 11%, and 4%, respectively of the world’s total mushroom production.
6.2 Physical Characteristics of RSM
RSM is best adapted in tropical and subtropical regions (Bao et al. 2013) and grows at relatively high temperatures (Obodai and Odamtten 2012). Its total crop cycle, under favorable growing conditions, is within 4–5 weeks (Biswas 2014). It belongs to the Fungi kingdom, Plutaceae family, Agaricales order, Agaricomycetes class, and Basidiomycota division (Chang 1969, 1974; Rajapakse 2011). RSM has an umbrella-shaped cap (pileus) ranging from dark grey to brown and a diameter of 8–10 cm. When young, its cap has an egg-like shape and, as it matures, it becomes cone-like and nearly flat. The stalk (stipe) ranges in color from silky white to brown, which develops to a brownish gray sack-like cup (volva) (Chang and Miles 2004). The mycelia, the vegetative parts, comprise of threads and cord-like strands branching out through the substrate.
6.3 Environmental and Nutritional Requirements
Environmental requirements for RSM growth
Parameter | Mycelium | Fruiting | ||
---|---|---|---|---|
Range | Optimal | Range | Optimal | |
Temperature, oC | 15–42 | 35 ± 2 | 25–30 | 28 ± 2 |
Relative humidity, % | 50–70 | 60 ± 5 | 80–100 | 90 ± 5 |
pH | 6–7 | 6.5 | 6–7 | 6.5 |
Traditionally, RSM is mostly cultivated outdoors because of the low investment cost. However, outdoor cultivation has low and unstable productivity due to exposure to changing weather conditions (Reyes 2000). Although controlled indoor mushroom cultivation requires more investment, it usually results in higher and more stable yields (Chang 1996). In addition, through environmental control, RSM can be intensively cultivated, growing from six to eight crops annually. Palitha (2011) reported that the yield of indoor RSM cultivation can be 2.7 times higher than that of outdoor practice with the same application of feedstock.
BE is the biological efficiency
FWm is the total fresh weight (g) of mushroom yield across all flushes, and
DWs is the substrate dry weight (g)
6.4 Current Practices for Growing Mushroom
6.4.1 Outdoor RSM Cultivation
Growing RSM outdoors
Process of RSM production from rice straw preparation to mushroom harvesting. (Adapted from Thuc et al. 2019)
6.4.1.1 Rice Straw for Mushroom Growing and Preparation of the Growing Location
Rice straw intended for growing RSM should be dry, clean, without mold contamination, and should not have been exposed to rain or should not have started rotting in the field. Rice straw contaminated with molds may have mycelia or spawns with a white color. To minimize contamination and for best quality, the straw should be collected right after harvest. The location for growing RSM should be cleaned and treated with 300–500 kg ha−1 (3–5 kg 100 m−2) of lime (CaCO3) 3 days before incubation.
6.4.1.2 Growing Preparation and Maintenance of Planting Spawn
The most commonly used spawn substrate is a mixture of tobacco midrib and sawdust. The tobacco midribs are first soaked in clean water overnight. After soaking, they are washed at least three times, drained, and then chopped into lengths of from 2 to 4 cm. The chopped midribs are boiled for 30 minutes and then drained until the moisture content reaches around 65%. Next, the midribs are mixed with the sawdust. About 350 g of mixed spawn substrate is placed inside a 6- × 12-in. polypropylene (PP) bag. For easier handling, a plastic ring may be placed as a “bottle neck” on the PP bag. This can be done by pulling out the PP bag end through the polyvinylchloride (PVC) ring then folding the pulled-out part outward to make an opening. Next, the folded part is secured by tying with a rubber band. The PVC neck opening is plugged with a rolled cotton waste then covered with paper secured with rubber band.
The PP bags containing the spawn substrates are sterilized using an autoclave at 15 psi pressure and 121 °C for 30 min. The sterilized PP bags with the spawn substrates are then transferred to the inoculation room and allowed to cool down.
The sterilized bags are kept inside the laminar flow under a UV tube or inoculation chamber for 20–30 min. Inoculation is done by removing the cotton plug of each bag, then placing a 1-sq mm pure culture mycelial block on top of the spawn substrate using a sterilized inoculation needle, then replacing the cotton plug. The process is repeated until all the bags with substrates have been inoculated.
The inoculated bags are kept in the incubation room at 32 °C temperature for 2 weeks, or until mycelial growth reaches the bottom of each bag. The bags should always be checked for contamination during the incubation period. The shelf life of the spawn is about 4 weeks at room temperature. It can also be refrigerated at 4 °C to prolong storage. The refrigerated spawn should be primed at room temperature before using in order to activate spawn growth.
6.4.1.3 Preparation of Growing Beds and Spawning
Manual bedding
Bedding using a wooden frame
The bedding materials are soaked in clean water for 12 h to make them soft and pliable. The soaked substrates are rinsed with clean water to remove the slime, fermenting odor, and to reduce acidity. Soaking is a prelude to composting.
In composting, the soaked substrates are piled up then covered with plastic sheets. The composting period is 14 days and the pile should be turned on the 7th day to ensure even composting. In some cases, 1% molasses and 5% complete fertilizer (14–14-14 NPK) are mixed into the substrate during composting. Agricultural lime (1%) is also added when the compost pile is turned. Through composting, the substrates are converted into a rich medium suitable for mushroom growth.
The moisture content of the substrate during bed preparation must be close to 65%. Growing beds are established by piling the bundled substrates into layers. The spawns are sprinkled thinly over the bundles in each layer. It can also be placed in thumb-size bands 7 cm from the edge of the bed at a distance of 10 cm between bands. Sometimes the spawn is covered with newspaper to protect the spawn from drying and to enhance better mycelial growth. If the substrate were not applied with molasses and fertilizer during composting, a nutrient solution, containing 10 g of urea and 30 g of sugar mixed in 4 L of water, is sprinkled over each substrate layer. The process should be repeated until all layers have been treated. Ideally, the bed should have three layers and should be from 2.5 to 3 m long.
The growing bed is covered with a polyethylene plastic sheet to maintain the desired temperature and relative humidity appropriate for mycelial growth. The optimum temperature for incubation ranges from 30 to 35 °C with a relative humidity ranging from 75 to 85%. The incubation period takes from 10 to 14 days. Mushroom primordia or pinheads usually appear on the side and surface of the growing beds 5 days after spawning. Once pinheads are observed, the plastic sheet cover should be lifted for a while to introduce fresh air. The temperature should be maintained at 30 to 32 °C to synchronize fruiting body formation during the fruiting stage. The surroundings of the beds should be watered to help maintain the desired temperature.
6.4.1.4 Mushroom Growing Care
In the first 3 days after adding spawn to the straw beds, the beds need to be exposed to the sun to increase the temperature inside, which stimulates mycelial growth. Then, the beds are covered with a net and dry straw. Some nutritional supplements or stimulants such as Bioted, HQ, or HVP 301 can be sprayed onto the beds to enhance better mushroom growth. The beds can be watered and covered with rice straw to maintain the temperature and humidity as well as to maximize the yield and quality of RSM production, as indicated in Table 6.2.
6.4.1.5 Harvesting and Processing
The first fruiting flush occurs about 14 days after incubation and continues for about 5 days. After the fruiting flush, water is sprinkled over the bed and covered again with the plastic sheet to build up the temperature. Within 7–14 days, the next fruiting flush will appear. The succeeding fruiting flushes often consist of larger, but fewer fruiting bodies than the first flush. Hand picking is the common method of harvesting and sorting the mushrooms. This guarantees less damage and better quality. The mushrooms are picked from the growing beds with a rotating motion. The harvest is sorted based on quality and size. To enhance higher protein content, better palatability, and longer shelf life, the preferred times for harvesting are during the button to egg-shaped stages.
6.4.2 Indoor RSM Growing
Spread bedding
Compacted bedding
6.4.3 Case Study of Cost-Benefits for Growing Indoor and Outdoor Mushroom
Comparing cost-benefits between outdoor and indoor RSM growing practices in MRD
Parameters | Outdoor | Indoor | ||
---|---|---|---|---|
$US kg−1 of mushroom | $US m−2 of land used | $US kg−1 of mushroom | $US m−2 of land used | |
Inputs | ||||
Land used (rental) | 0.15 | 0.04 | 0.16 | 0.35 |
Rice straw | 0.51 | 0.38 | 0.54 | 3.33 |
Net, pump, depreciation of growing house (indoor only) | 0.03 | 0.54 | 0.03 | 4.76 |
Lime, fertilizer and pesticide | 0.12 | 0.07 | 0.13 | 0.60 |
Spawns | 0.14 | 0.10 | 0.15 | 0.83 |
Watering (power consumption) | 0.03 | 0.02 | 0.03 | 0.21 |
Labor | 0.30 | 0.08 | 0.32 | 0.71 |
Total inputs | 1.28 | 1.23 | 1.37 | 10.79 |
Outputs | ||||
Mushroom | 1.67 | 1.67 | 1.78 | 14.58 |
Spent rice straw | 0.15 | 0.10 | 0.16 | 0.83 |
Total outputs | 2.35 | 2.29 | 2.51 | 20.04 |
Net profit | 0.5 | 0.6 | 0.5 | 4.6 |
land used. The indoor practice cost breakdown was depreciation of growing house and facilities, 44%; rice straw, 31%; labor, 7%; and the rest for use, depreciation of net, pump, and growing house (for indoor scenario), and watering. Net profit accounted for 1 kg of mushroom produced was the same for both indoor and outdoor practices at 0.5–0.6 $US kg−1. Whereas, accounting for a square meter of land used, net profit of the indoor practice was 4.6 $US m−2 about 9 times higher than that of the outdoor practice. However, RSM is commonly cultivated in rural areas, near the rice fields to reduce the cost of transporting the rice straw. So, outdoor mushroom growing is still widely done in Vietnam.
6.5 Pest and Disease Problems
RSM is very sensitive to the environment including temperature, sunlight, water, oxygen (O2), and carbon dioxide (CO2). Sudden changes in temperature may hamper or even stop mushroom growth. Sunlight is needed from the sphere to the egg stages. With a lack of sunlight, vitamin E will be significantly reduced, vitamin D will not be available, and melanin pigment (black pigment) will not form in RSM.
Green mold (Verticillium fungicola), orange mold (Neurospora spp.), plaster mold (Scopulariopsis fimicola), acne mushroom (Selerotium rolfsii), etc. are the typical diseases that affect RSM. These diseases can be prevented or treated by using lime water with a 0.5–1% concentration and applied by watering on the affected area. Gypsum disease can be treated with potassium permanganate (KMnO4) or acetic acid (40%). If the disease is severe, it can be treated by fungicides, such as Benomyl 0.1%, 7% Zineb, or Validacin (for acne).
6.6 Preservation and Consumption of RSM
RSM can be used and processed into many different products but it is easily damaged during harvesting and primary processing. The selection of appropriate technology for product storage and processing on a scale that is compatible with production conditions will promote the cultivation of mushrooms and help stabilize consumption.
RSM spoils very quickly and can be stored at most for 3 days at temperatures between 10 and 15 °C or in controlled atmosphere packaging (Jamjumroon et al. 2012) it loses moisture in 4 days, resulting in a 40–50% loss of mushroom weight when stored under normal ambient temperature. Thus, other methods are used for longer storage, one of which is dried RSM. However, sun drying often changes the color and taste of the product. Furthermore, RSM exposed to the sun outdoors is susceptible to microbial contamination. The drying process takes 24 h at 30 °C. The drying temperature can start at 40 °C and then gradually increase over 8 h to 45 °C. Raw materials of dried mushrooms can be left or cut in half. If cut in half, they must be pretreated before drying. Blanching for 3–4 min in hot water or 4–5 min in hot steam helps mushrooms keep their color better during storage. When RSM is dried at 60 °C for 7 h, the moisture content may reach 5%. Dried mushrooms can be stored or pulverized for use in spices. Other methods recommended for RSM preservation include air-conditioning packaging with storage media (Lopez-Briones et al. 1992), drying (Izli and Isik 2014), freezing (Murr and Morris 1975), soaking in saline or acid solution (Cliffe-Byrnes and O’Beirne 2008), and canning (Vivar-Quintana et al. 1999).
Storage time can be extended for 3–6 months by soaking the mushrooms in acidic or saline solutions, which help extend shelf life and maintain their color. The mushrooms are washed in plain water before dipping into the saline solution. The mushrooms are then put in the containers and covered with the saline solution.
Mushroom preservation through industrial canning technology is used in many countries around the world. The process of producing canned RSM includes preliminary processing, blanching, stacking, sterilization, cooling, labeling, and packaging. In order to produce canned mushrooms of good quality, it is necessary to process harvested mushrooms as soon as possible. In case of unavoidable delay, mushrooms should be stored at 4–5 °C until processed.
However, all the other preservation methods result in inferior mushroom eating quality compared to that of fresh mushroom, in terms of the original flavor, color, hardness, and so on. Extending the shelf life of fresh mushroom beyond 3 days is most important, as illustrated in the case of the Mekong Delta in Vietnam. In the local market, mushrooms are consumed as a fresh vegetable with the price normally fluctuating from 2 to 4 US$ kg−1 at the first and 15th day of the lunar month. A small portion of salted or dried RSM is also exported at 2 US$ kg−1, but is not as much appreciated as fresh mushrooms. For estimating consumer trends, we can look at the American market. In 2012, the share of fresh mushrooms was 87% in quantity and 93% in value; the remaining minor portion is processed mushroom, with a farm gate price of only one half compared to that of fresh mushroom (Phan-Hieu-Hien 2017).
The price of fresh RSM at US supermarkets in 2013 was about 10 $US kg−1, while that of salted mushroom was only 5 $US kg−1 (personal communication with Mr. Le Duy Thang, mushroom expert). From farms in Vietnam to US supermarkets, fresh RSM needs a minimum of 8 days to “travel”, including 2–3 days through customs and 2–3 days at supermarkets before reaching consumers. The 8-day shelf life of fresh mushroom is the greatest constraint to boost mushroom production, or indirectly to increase the use of rice straw. Luckily after decades of deadlock, some research results are promising (Dhalsamant et al. 2018). Factors to help ensure a successful 8-day storage cycle include: (1) a suitable temperature, say 12 °C; (2) a controlled-atmosphere packaging, which is balanced between oxygen and carbon dioxide content; and (3) a chemical pretreatment, such as CaCl2. More in-depth research is needed in parallel with pilot testing for economic performance.
6.7 Summary and Recommendations
Producing RSM is a sustainable option for adding value to rice production and reducing environmental harm through avoiding the burning of rice straw in the field. Growing outdoor RSM is a traditional practice with low investment costs but generates low yield and incurs high risk because it is strongly affected by changes in the weather. On the other hand, growing indoor RSM has higher investment costs but greater productivity and lower risks due to its well controlled environment.
One of the major bottlenecks for developing RSM is its market. Even though fresh RSM has high value, it cannot be stored for more than 3 days because it is highly perishable. Using technology to improve preservation to lengthen the storage time is a key to increasing the market and price and improving RSM’s value chain.
References
- Ahlawat OP, Tewari RP (2007) Cultivation technology of paddy straw mushroom (Volvariella volvacea). Technical Bulletin. Yugantar Prakashan Pvt. Ltd. WH-23, Mayapuri Indl. Area, New Delhi. p 64Google Scholar
- Ahlawat OP, Singh R, Kumar S (2011) Evaluation of Volvariella volvacea strains for yield and diseases/insect-pests resistance using composted substrate of paddy straw and cotton mill wastes. Indian J Microbiol 51(2):200–205CrossRefGoogle Scholar
- Akinyele BJ, Adetuyi FC (2005) Effect of agrowastes, pH and temperature variation on the growth of Volvariella volvacea. Afr J Biotechnol 4(12):1390–1395Google Scholar
- Bao D, Gong M, Zheng H, Chen M, Zhang L, Wang H, Jiang J, Wu L, Zhu Y, Zhu G, Zhou Y, Li C, Wang S, Zhao Y, Zhao G, Tan Q (2013) Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS One 8(3):e58294. https://doi.org/10.1371/journal.pone.0058294 CrossRefGoogle Scholar
- Belewu MA, Belewu KY (2005) Cultivation of mushroom (Volvariella volvacea) on banana leaves. Afr J Biotechnol 4(12):1401–1403Google Scholar
- Bernaś E, Jaworska G, Kmiecik W (2006) Storage and processing of edible mushrooms. Acta Sci Pol Technol Aliment 5:5–23Google Scholar
- Biswas MK (2014) Cultivation of paddy straw mushrooms (Volvariella volvacea) in the lateritic zone of West Bengal-a healthy food for rural people. Intl J Econ Plants 1(1):043–047Google Scholar
- Biswas MK, Layak M (2014) Techniques for increasing the biological efficiency of paddy straw mushroom (Volvariella Volvacea) in eastern India. Food Sci Technol 2(4):52–57Google Scholar
- Chandra O, Chaubey K (2017) Volvariella volvacea: a paddy straw mushroom having some therapeutic and health prospective importance. World J Pharm Pharm Sci 6(9):1291–1300Google Scholar
- Chang ST (1969) A cytological study of spore germination of Volvariella volvacea. Bot Mag 82:102–109CrossRefGoogle Scholar
- Chang ST (1974) Production of straw mushroom (Volvariella volvacea) from cotton wastes. Mushroom J 21:348–354Google Scholar
- Chang ST (1996) Mushroom research and development - equality and mutual benefit. Proceedings of the 2nd international conference on mushroom biology and mushroom products. Pennsylvania State University, Pennsylvania, pp 1–10Google Scholar
- Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press, Boca Raton. 480 pCrossRefGoogle Scholar
- Chang ST, Quimio TH (1989) Tropical mushrooms: biological nature and cultivation methods. The Chinese University of Hong Kong, Hong KongGoogle Scholar
- Chang ST, Lau OW, Cho KY (1981) The evaluation and nutritive value of Pleurotus sajor-caju. European J Appl Microbiol Biotechnol 12:58–62CrossRefGoogle Scholar
- Cliffe-Byrnes V, O’beirne D (2008) Effects of washing treatment on microbial and sensory quality of modified atmosphere (MA) packaged fresh sliced mushroom (Agaricus bisporus). Postharvest Biol Technol 48:283–294CrossRefGoogle Scholar
- Cuesta MC, Castro-Rios K (2017) Mushroom as strategy to reduce food insecurity in Cambodia. Nutr Food Sci 47(6):817–828CrossRefGoogle Scholar
- Dhalsamant K, Dash SK, Bal LM, Panda MK (2018) Evaluation of modified atmosphere packaged chemically treated mushroom (Volvariella volvacea) for shelf life quality. Agric Eng Today 42(1):66–72Google Scholar
- Eguchi F, Kalaw SP, Dulay RMR, Miyasawa N, Yoshimoto H, Seyama T, Reyes RG (2015) Nutrient composition and functional activity of different stages in the fruiting body development of Philippine paddy straw mushroom, Volvariella volvacea (Bull.:Fr.) Sing. Adv Environ Biol 9(22):54–65Google Scholar
- Fasidi IO (1996) Studies on Volvariella esculenta (mass) singer: cultivation on agricultural wastes and proximate composition of stored mushrooms. Food Chem 55(2):161–163CrossRefGoogle Scholar
- Feeney MJ, Dwyer J, Hasler-Lewis CM, Milner JA, Noakes M, Rowe, S, Wach M, Beelman RB, Caldwell J, Cantorna MT, Castlebury LA, Chang ST, Cheskin LJ, Clemens R, Drescher G, Fulgoni III VL, Haytowitz DB, Hubbard VS, Law D, Miller AM, Minor B, Percival SS, Riscuta G, Schneeman B, Thornsbury S, Toner CD, Woteki CE, Wu D (2014a) Mushrooms and health summit proceedings. Am Soc Nutr https://doi.org/10.3945/jn.114.190728
- Feeney MJ, Miller AM, Roupas P (2014b) Mushrooms – biologically distinct and nutritionally unique exploring a “third food kingdom”. Nutr Today 49(6):301–307CrossRefGoogle Scholar
- Gellerman B (2018) Lowly in stature, fungi play a big role in regulating climate. https://www.wbur.org/news/2018/09/18/mushrooms-fungi-climate
- Girmay Z, Gorems W, Birhanu G, Zepdie S (2016) Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express 6:87.. Published online 2016 Oct. 4. https://doi.org/10.1186/s13568-016-0265-1 CrossRefGoogle Scholar
- Hobbs H (1995) Medicinal mushrooms. Amer IBot 87:821–827. https://www.researchgate.net/publication/324080400_Edible_mushrooms_new_food_fortification_approach_toward-food-security Google Scholar
- Hung PV, Nhi NNY (2012) Nutritional composition and antioxidant capacity of several edible mushrooms grown in the southern Vietnam. Int Food Res J 19(2):611–615Google Scholar
- Imtiaj A, Rahman SA (2008) Economic viability of mushrooms cultivation to poverty reduction in Bangladesh. Trop Subtrop Agroecosyst 8:93–99Google Scholar
- Ishara J, Kenji GM, Sila DN (2018) Edible mushrooms: new food fortification approach towards food security. LAP Lambert Academic Publishing, Congo. http://www.tropentag.de/2018/abstracts/links/Jackson_yTIhZlpj.pdf Google Scholar
- Izli N, Isik E (2014) Effect of different drying methods on drying characteristics, colour and microstructure properties of mushroom. J Food Nutr Res 53(2):105–116Google Scholar
- Jamjumroon S, Wongs-Aree C, McGlasson WB, Srilaong V, Chalermklin P, Kanlayanarat S (2012) Extending the shelf-life of straw mushroom with high carbon dioxide treatment. J Food Agric Environ 10(1):78–84Google Scholar
- Langston A (2014) Can mushroom fight climate change? Greener Ideal https://greenideal.com/news/environment/0225-can-mushrooms-fight-climate-change/
- Lopez-Briones G, Varoquaux P, Chambroy Y, Bouquant J, Bureau G, Pascat B (1992) Storage of common mushroom under controlled atmospheres. Int J Food Sci Technol 27:493–505CrossRefGoogle Scholar
- Manzi P, Aguzzi A, Pizzoferrato L (2001) Nutritional value of mushrooms widely consumed in Italy. Food Chem 73(3):321–325CrossRefGoogle Scholar
- Murr DP, Morris LL (1975) Effect of storage temperature on postharvest changes in mushroom. J Am Soc Hortic Sci 100(1):16–19Google Scholar
- Obodai M, Odamtten GT (2012) Mycobiota and some physical and organic composition of agricultural wastes used in the cultivation of the mushroom Volvariella volvacea. J Basic Appl Mycol 3:21–26Google Scholar
- Palitha R (2011) New cultivation technology for paddy straw mushroom (Volvariella volvacea). In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7)Google Scholar
- Phan-Hieu-Hien (2017) Utilization of rice straw in the world and in Vietnam. J Agric Sci Technol 6:17–31Google Scholar
- Rajapakse P (2011) New cultivation technology for paddy straw mushroom (Volvariella volvacea). In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7). 446–451Google Scholar
- Ramkumar L, Ramanathan T, Johnprabagaran J (2012) Evaluation of nutrients, trace metals and antioxidant activity in Volvariella volvacea (Bull. Ex. Fr.) Sing. Emir J Food Agric 24(2):113–119Google Scholar
- Reyes RG (2000) Indoor cultivation of paddy straw mushroom, Volvariella volvacea, in crates. Mycologist 14(4):174–176CrossRefGoogle Scholar
- Shakil MH, Tasnia M, Munim ZH, Mehedi MHK (2014) Mushroom as a mechanism to alleviate poverty, unemployment and malnutrition. Asian Bus Rev 4(9):31–34Google Scholar
- Shwetha VK, Sudha GM (2012) Ameliorative effect of Volvariella volvacea aqueous extract (Bulliard ex fries) singer on gentamicin induced renal damage. Int J Pharm Bio Sci 3(3):105–117Google Scholar
- Solovyev N, Prakash NT, Bhatia P, Prakash R, Drobyshev E, Michalke B (2018) Selenium-rich mushrooms cultivation on a wheat straw substrate from seleniferous area in Punjab, India. J Trace Elem Med Biol 50:362–366CrossRefGoogle Scholar
- Sudha A, Lakshmanan P, Kalaiselvan B (2008) Antioxidant properties of paddy straw mushroom (Volvariella volvacea (bull. Ex Fr.)) sing. Int J Appl Agric Res 3:9–16Google Scholar
- Le Duy Thang (2006). Growing edible mushroom. Ho Chi Minh Agricultural Publisher, 242 pGoogle Scholar
- Thiribhuvanamala G, Krishnamoorthy S, Manoranjitham K, Praksasm V, Krishnan S (2012) Improved techniques to enhance the yield of paddy straw mushroom (Volvariella volvacea) for commercial cultivation. Afr J Biotechnol 11(64):12740–12748Google Scholar
- Thuc LV, Truc NTT, Hung NV (2019) Outdoor mushroom growing. http://ricestraw.irri.org/resources-1
- Tripathy A (2010) Yield evaluation of paddy straw mushrooms (Volvariella spp.) on various lignocellulosic wastes. Int J Appl Agric Res 5(3):317–326Google Scholar
- USITC (United States International Trade Commission) (2010) Mushrooms industry and trade summary. Office of Industries Publication, Washington, DCGoogle Scholar
- Vivar-Quintana AM, González-San Josè ML, Collado-Fernández M (1999) Influence of canning process on colour weight and grade of mushrooms. Food Chem 66:87–92CrossRefGoogle Scholar
- Vizhanyo T, Jozsef F (2000) Enhancing colour difference in images of diseased mushrooms. Comput Electron Agric 26:187–198CrossRefGoogle Scholar
- Walde SG, Velu V, Jyothirmayi T, Math RG (2006) Effects of pretreatment and drying methods on dehydration of mushroom. J Food Eng 74:108–115. https://www.sciencedirect.com/science/article/abs/pii/S0260877405001202 CrossRefGoogle Scholar
- Zhang Y, Geng W, Shen Y, Wang Y, Dai YC (2014) Edible mushroom cultivation for food security and rural development in China: bio-innovation, technological dissemination and marketing. Sustainability 6(5):2961–2973CrossRefGoogle Scholar
- Zikriyani H, Saskiawan I, Mangunwardoyo W (2018) Utilization of agricultural waste for cultivation of paddy straw mushrooms (Volvariella volvacea (bull.) singer 1951). Intl J Agric Technol 14(5):805–814Google Scholar
Copyright information
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.