Skip to main content

Mesofauna and Macrofauna in Soil and Litter of Mixed Plantations

  • Chapter
  • First Online:
Mixed Plantations of Eucalyptus and Leguminous Trees

Abstract

The cultivation of leguminous nitrogen-fixing tree species improves soil chemical properties, especially with regard to N, and has been identified to be ecologically and economically interesting in intercropped systems with Eucalyptus spp., although the effect of these mixed plantations on soil and litter invertebrates still is poorly understood. This chapter tries to elucidate how forest plantations affect the soil mesofauna and macrofauna. Our results showed that management systems and weather conditions are the main factors that affect the soil faunal community structure. In soil and in litter, the mesofauna community is strongly related to Acacia mangium, and these invertebrates are strongly modulated by the water content in soil. Under lower soil moisture, we verified higher mesofauna abundance in the soil and higher correlation between invertebrates and microorganisms; however, with even a little increase in soil moisture, most of the invertebrates preferred litter and, in this case, there was little correlation. Leguminous trees were associated with a higher abundance of soil macrofauna than Eucalypt plantations, especially with millipedes. In mixed plantations of Eucalypt and Acacia, there was a higher macrofauna abundance and diversity, since they are more comparable to native forests than to agricultural systems, because of less anthropogenic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliaga R, Fuentes AH, Clericus JEA (2017) Effect of post-harvest forestry residue management practices on the diversity of epigeal coleopterans. Rev Fac Nac Agron 70:8069–8075

    Article  Google Scholar 

  • Anderson JM (2009) Why should we care about soil fauna? Pesqui Agropecu Bras 44:835–842

    Article  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook on methods, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Assis O (2015) Enquitreídeos (Enchytraeidae, Oligochaeta) como indicadores do manejo do solo e em ensaios ecotoxicológicos. Master’s Dissertation, Universidade Tecnológica do Paraná

    Google Scholar 

  • Bachega LR, Bouillet JP, Picollo MC, Saint-André L, Bouvet JM, Nouvellon Y, Gonçalves JLM, Robin A, Laclau JP (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. For Ecol Manag 359:33–43

    Article  Google Scholar 

  • Barbercheck ME, Neher DA, Anas O, El-Allaf SM, Weicht TR (2009) Response of soil invertebrates to disturbance across three resource regions in North Carolina. Environ Monit Assess 152:283–298

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Baretta D, Santos JCP, Segat JC, Geremia EV, Oliveira Filho LCI, Alves MV (2011) Fauna edáfica e qualidade do solo. In: Tópicos em Ciência do Solo. SBCS, Viçosa, pp 119–170

    Google Scholar 

  • Bartz MLC, Brown GG, Rosa MG, Klauberg Filho O, James SW, Decaëns T, Baretta D (2014) Earthworm richness in land-use systems in Santa Catarina, Brazil. Appl Soil Ecol 83:59–70

    Article  Google Scholar 

  • Bini D, Santos CA, Bouillet JP, Gonçalves JLM, Cardoso EJBN (2013) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66

    Article  Google Scholar 

  • Blasi S, Menta C, Balducci L, Conti FD, Petrini E, Piovesan G (2013) Soil micro-arthropod communities from Mediterranean forest ecosystems in Central Italy under different disturbances. Environ Monit Assess 185:1637–1655

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Niva CC, Zagatto MRG, Ferreira S, Nadolny H, Cardoso GX, Santos A, Martinez G, Pasini A, Bartz MLC, Sautter KD, Thomazini MJ, Baretta D, Silva E, Antoniolli ZI, Decaëns T, Lavelle P, Sousa JP, Carvalho F (2015) Biodiversidade da Fauna do solo e sua contribuição para os serviços ambientais. In: Parron LM, Garcia JR, Oliveira EB, Brown GG, Prado RB (eds) Serviços Ambientais em Sistemas Agrícolas e Florestais do Bioma Mata Atlântica. EMBRAPA, Brasília, pp 113–154

    Google Scholar 

  • Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CA, Alves PRL, Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289

    Article  Google Scholar 

  • Carrera N, Briones MJI (2013) Arthropod community structure and diversity from galician upland peatlands. In: Riosmena-Rodriguez R (ed) Invertebrates: classification evolution and biodiversity. Nova Science, New York, p 251

    Google Scholar 

  • Choi WI, Moorhead DL, Neher DA, MIl R (2006) A modeling study of soil temperature and moisture effects on population dynamics of Paronychiuruskimi (Collembola: Onychiuridae). Biol Fertil Soils 43:69–75

    Article  Google Scholar 

  • Creamer RE, Hannula SE, JPV L, Stone D, Rutgers M, Schmelz RM, Ruitter PC, Hendriksen NB, Bolger T, Bouffaud ML, Buee M, Carvalho F, Costa D, Dirilgen T, Francisco R, Griffiths BS, Griffiths R, Martin F, Martins da Silva P, Mendes S, Morais PV, Pereira C, Philippot L, Plassart P, Redecker D, Römbke J, Sousa JP, Wouterse M, Lemanceau P (2016) Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl Soil Ecol 97:112–124

    Article  Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25

    Google Scholar 

  • Didden WAM (1993) Ecology of terrestrial Enchytraeidae. Pedobiologia 37:2–29

    Google Scholar 

  • Filho LCIO, Baretta D (2016) Por que devemos nos importar com os colêmbolos edáficos? Sci Agrár 17:21–40

    Google Scholar 

  • Filser J, Faber JH, Tiunov AV, Brussaard L, Frouz J, Deyn G, Uvarov AV, Berg MP, Lavelle P, Loreau M, Wall DH, Querner P, Eijsackers H, Jiménez JJ (2016) Soil fauna: key to new carbon models. Soil 2:565–582

    Article  CAS  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review. For Ecol Manag 233:211–230

    Article  Google Scholar 

  • Fountain-Jones NM, Baker SC, Jordan GJ (2015) Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecol Entomol 40:1–13

    Article  Google Scholar 

  • Gardi C, Menta C, Leoni A (2008) Evaluation of the environmental impact of agricultural management practices using soil microarthropods. Fresenius Environ Bull 17:1165–1169

    CAS  Google Scholar 

  • Gonçalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South Forest 70:105–118

    Article  Google Scholar 

  • Graefe U, Beylich A (2003) Critical values of soil acidification for annelid species and decomposer community. Newsletter Enchytraeidae 8:51–55

    Google Scholar 

  • Huhta V, Hyvönen R, Koskenniemi A, Vilkamaa P, Kaasalainen P, Sulander M (1986) Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Acta Forest Fenn 195:1–30

    Google Scholar 

  • Huhta V (1984) Response of Cognettia sphagnetorum (Enchytraeidae) to manipulation of pH and nutrient status to coniferous forest soil. Pedobiologia 27:245–260

    Google Scholar 

  • IBÁ (2015) Anuário estatístico—Ano base 2014

    Google Scholar 

  • Kamau S, Barrios E, Karanja NK, Ayuke FO, Lehmann J (2017) Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biol Biochem 112:35–46

    Article  CAS  Google Scholar 

  • Kaneda S, Kaneko N (2011) Influence of collembola on nitrogen mineralization varies with soil moisture content. Soil Sci Plant Nutr 57:40–49

    Article  Google Scholar 

  • Kautz G, Zimmer M, Topp W (2002) Does Porcellioscaber (Isopoda: Oniscidea) gain from coprophagy? Soil Biol Biochem 34:1253–1259

    Article  CAS  Google Scholar 

  • Korasaki V, Lopes J, Brown GG, Louzada J (2012) Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity. Insect Sci 00:1–14

    Google Scholar 

  • Laclau JP, Bouillet JP, Gonçalves JLM, Silva EV, Jourdan C, Cunha MCS, Moreira MR, Saint-André L, Maquère V, Nouvellon Y, Ranger J (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 1. Growth dynamics and aboveground net primary production. For Ecol Manag 255:3905–3917

    Article  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters W, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Machado JS, Oliveira Filho LCI, Santos JCP, Paulino AT, Baretta D (2019) Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotrop 19:e20180618

    Article  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  CAS  PubMed  Google Scholar 

  • Meloni F, Varanda EM (2015) Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forests. Restor Ecol 23:690–697

    Article  Google Scholar 

  • Menta C, Conti FD, Pinto S (2018a) Microarthropods biodiversity in natural, seminatural and cultivated soils—QBS-ar approach. Appl Soil Ecol 123:740–743

    Article  Google Scholar 

  • Menta C, Conti FD, Pinto S, Bodini A (2018b) Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecol Indic 85:773–780

    Article  CAS  Google Scholar 

  • Mound LA (2005) Thysanoptera: diversity and interactions. Annu Rev Entomol 50:247–269

    Article  CAS  PubMed  Google Scholar 

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474

    Article  Google Scholar 

  • Niva CC, Cezar RM, Fonseca PM, Zagatto MRG, Oliveira EM, Bush EF, Clasen LA, Brown GG (2015) Enchytraeid abundance in Araucaria mixed forest determined by cold and hot wet extraction. Brazilian J Biol 75:169–175

    Article  Google Scholar 

  • Nurminen M (1967) Ecology of enchytraeids (Oligochaeta) in Finnish coniferous forest soil. Ann Zool Fenn 4:147–157

    Google Scholar 

  • Oliveira Filho LCI, Baretta D, Pereira JM, Maluche-Baretta CRD, Pompeo PN, Cardoso EJBN (2018) Fauna edáfica em ecossistemas florestais. In: Ciências Ambientais, pp 10–48

    Google Scholar 

  • Oliveira Filho LCI, Klauberg Filho O, Baretta D, Tanaka CAS, Sousa JP (2016) Collembola community structure as a tool to assess land use effects on soil quality. Rev Bras Cienc Solo 40:1–18

    Google Scholar 

  • Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agric Ecosyst Environ 74:157–165

    Article  Google Scholar 

  • Parisi A (2001) The biological soil quality, a method based on microarthropods (in Italy). Acta Nat L’Ateneo Parm 37:97–106

    Google Scholar 

  • Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Environ 105:323–333

    Article  Google Scholar 

  • Pelosi C, Römbke J (2016) Are Enchytraeidae (Oligochaeta: Anellida) good indicators of agricultural management practices? Soil Biol Biochem 100:255–253

    Article  CAS  Google Scholar 

  • Peña-Peña K, Irmler U (2016) Moisture, seasonality, soil fauna, litter quality and land use as a driver of decomposition in Cerrado soils in SE–Mato Grosso, Brazil. Appl Soil Ecol 107:124–133

    Article  Google Scholar 

  • Pereira APA, Andrade PAM, Bini D, Durrer A, Robin A, Bouillet JP, Andreote FD, Cardoso EJBN (2017a) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12:1–15

    Google Scholar 

  • Pereira APA, Zagatto MRG, Brandani CB, Mescolotti DL, Cotta SR, Gonçalves JLM, Cardoso EJBN (2018) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front Microbiol 9:1–13

    Article  Google Scholar 

  • Pereira JDM, Segat JC, Baretta D, Leandro R (2017b) Soil Macrofauna as a soil quality indicator in native and replanted Araucaria angustifolia forests. Rev Bras Ciênc Solo 41:1–15

    Article  Google Scholar 

  • Pereira JM, Baretta D, Cardoso EJBN (2015) Fauna edáfica em floresta de Araucária. In: Cardoso EJBN, Vasconcellos RLF (eds) Floresta Com Araucária: Composição Florística e Biota Do Solo. Editora FEALQ, Piracicaba, pp 153–180

    Google Scholar 

  • Pey B, Nahmani J, Auclerc A, Capowiez Y, Cluzeau D, Cortet J, Decaëns T, Deharveng L, Dubs F, Joimel S, Briard C, Grumiaux F, Laporte MA, Pasquet A, Pelosi C, Pernin C, Ponge JF, Salmon S, Santorufo L, Hedde M (2014) Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl Ecol 15:194–206

    Article  Google Scholar 

  • Pompeo PN, Oliveira Filho LCI, Filho OK, Mafra AL, Baretta CRDM, Baretta D (2016) Coleoptera diversity (Arthropoda: Insecta) and soil properties under soil management systems in the highlands of Santa Catarina state, Brazil. Sci Agrár 17:16–28

    Google Scholar 

  • Pompeo PN, Oliveira Filho LCI, Santos MAB, Mafra AL, Klauberg Filho O, Baretta D (2017) Morphological diversity of Coleoptera (Arthropoda: Insecta) in agriculture and forest systems. Rev Bras Cienc Solo 41:e0160433

    Article  Google Scholar 

  • Römbke J (2007) Enchytraeidae of tropical soils: state of the art, with special emphasis on Latin America. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Biologia 110:157–181

    Google Scholar 

  • Römbke J, Collado R, Schmelz RM (2007) Abundance, distribution and indicator potential of enchytraeid genera (Enchytraeidae, Clitellata) in secondary forests and pastures of the Mata Atlântica. Acta Hydrobiol Sin 31:139–150

    Google Scholar 

  • Rosa MG, Klauberg Filho O, Bartz MLC, Mafra AL, Sousa JPFA, Baretta D (2015) Macrofauna edáfica e atributos físicos e químicos em sistemas de uso do solo no planalto catarinense. Rev Bras Cienc Solo 39:1544–1553

    Article  Google Scholar 

  • Santos MAB, Oliveira Filho LCI, Pompeo PN, Ortiz DC, Mafra AL, Klauberg Filho O, Baretta D (2018) Morphological diversity of springtails in land use systems. Rev Bras Cienc Solo 41:e0170277

    Google Scholar 

  • Schlaghamerský J (2013) Enchytraeid assemblages (Annelida: Clitellata: Enchytraeidae) of two old growth forests in the Porcupine Mountains (Michigan, USA). Soil Organisms 85:85–96

    Google Scholar 

  • Schmelz RM, Collado R (2010) A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82:1–176

    Google Scholar 

  • Schmelz RM, Niva CC, Römbke J, Collado R (2013) Diversity of terrestrial Enchytraeidae (Oligochaeta) in Latin America: current knowledge and future research potential. Appl Soil Ecol 69:13–20

    Article  Google Scholar 

  • Silva RF, Aquino AM, Mercante FM, Guimarães MF (2006) Soil invertebrate macrofauna under different production systems in a Hapludox in the Cerrado Regional. Pesqui Agropecu Bras 41(4):697–704

    Article  Google Scholar 

  • Souza ST, Cassol PC, Baretta D, Bartz MLC, Klauberg Filho O, Mafra AL, Rosa MG (2016) Abundance and diversity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Rev Bras Cienc Solo 40:e0150248

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford

    Google Scholar 

  • Teuben A, Verhoef HA (1992) Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol Fertil Soils 14:71–75

    Article  CAS  Google Scholar 

  • Vaçulik A, Kounda-Kiki C, Sarthou C, Ponge JF (2004) Soil invertebrate activity in biological crusts on tropical inselbergs. Eur J Soil Sci 55:539–549

    Article  Google Scholar 

  • Van Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Eur J Soil Biol 50:165–181

    Article  Google Scholar 

  • Van Der Putten WH, De Ruiter PC, Bezemer TM, Harvey JA, Wassen M, Wolters V (2004) Trophic interactions in a changing world. Basic Appl Ecol 5:487–494

    Article  Google Scholar 

  • Van Vliet PCJ, Beare MH, Coleman DC, Hendrix PF (2004) Effects of enchytraeids (Annelida: Oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Appl Soil Ecol 25:147–160

    Article  Google Scholar 

  • Wagg C, Bender F, Widmer F, van der Heyden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren MW, Zou X (2002) Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For Ecol Manag 170:161–171

    Article  Google Scholar 

  • Zagatto MRG, Niva CC, Thomazini MJ, Baretta D, Santos A, Nadolny H, Cardoso GBX, Brown GG (2017) Soil invertebrates in different land use systems: how integrated production systems and seasonality affect soil Mesofauna communities. J Agric Sci Technol B 7:150–161

    Google Scholar 

  • Zagatto MRG, Pereira APA, Souza AJ, Fabri RF, Baldesin LF, Pereira CM, Lopes RV, Cardoso EJBN (2019a) Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 433:240–247

    Article  Google Scholar 

  • Zagatto MRG, Zanão Júnior LA, Pereira APA, Estrada-Bonilla G, Cardoso EJBN (2019b) Soil mesofauna in consolidated land use systems: how management affects soil and litter invertebrates. Sci Agric 76(2):165–171

    Article  CAS  Google Scholar 

  • Zhiqun T, Jian Z, Junli Y, Chunzi W, Danju Z (2017) Chemosphere Allelopathic effects of volatile organic compounds from Eucalyptus grandis rhizosphere soil on Eisenia fetida assessed using avoidance bioassays, enzyme activity, and comet assays. Chemosphere 173:307–317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zagatto, M.R.G., Oliveira Filho, L.C.I., Pompeo, P.N., Niva, C.C., Baretta, D., Bran Nogueira Cardoso, E.J. (2020). Mesofauna and Macrofauna in Soil and Litter of Mixed Plantations. In: Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A. (eds) Mixed Plantations of Eucalyptus and Leguminous Trees. Springer, Cham. https://doi.org/10.1007/978-3-030-32365-3_8

Download citation

Publish with us

Policies and ethics