Skip to main content

Biological Nitrogen Fixation (BNF) in Mixed-Forest Plantations

  • Chapter
  • First Online:
Mixed Plantations of Eucalyptus and Leguminous Trees

Abstract

Nitrogen (N) supply is one of the key factors for the success of forest plantations and the search for strategies that allow constant N inputs with reasonable cost is desirable. The ability to fix and accumulate large amounts of N confers adaptive characteristics to the legumes that excel over other species. Here we address the biological nitrogen fixation (BNF) as an ecological strategy in mixed-forest plantations, allowing N fixation to act positively on the development of non-N2-fixing species. We include a brief description on the BNF establishment and the taxonomy and efficiency of the relevant bacteria. In Brazil, the contribution of BNF in mixed-forest plantations, mainly the ones between Eucalyptus spp. and Acacia spp., has demonstrated that their use is improving the quality of the soil organic matter and the N status of the system. The productivity of the non-N2-fixing species increases, especially in oligotrophic soils, varying from 2 to 90%. Normally, the BNF contribution is higher in mixed plantations than in monocultures and the amount of biologically fixed N makes up 50–60 kg ha−1 year−1. The studies on nitrogen-fixing tree species and mixed-species stands recently were intensified. However, large-scale use of mixed forest plantations is still challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar JA, Barbosa RI, Barbosa JB, Mourão M Jr (2014) Invasion of Acacia mangium in Amazonian savannas following planting for forestry. Plant Ecol Divers 7(1–2):359–369

    Article  Google Scholar 

  • Allen ON, Allen EK (1981) The leguminosae: a source book of characteristics use and nodulation. University of Wisconsin Press, Wisconsin, p 812

    Book  Google Scholar 

  • Andrade AB, Costa GS, Faria SM (2000) Deposição e decomposição da serapilheira em povoamentos de Mimosa caesalniifolia, Acacia mangium e Acacia holosericea com quatro anos de idade em Planossolo. Rev Bras Ciênc Solo 24:777–785

    Article  Google Scholar 

  • Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18(4):705

    Article  CAS  PubMed Central  Google Scholar 

  • Balieiro FC, Dias FC, Franco AA, Campello EFC, Faria SM (2004) Acúmulo de nutrientes na parte aérea, na serapilhiera acumulada sobre o solo e decomposição de filódios de Acacia mangium Willd. Ciência Florestal 14:59–65

    Article  Google Scholar 

  • Barberi A, Carneiro MAC, Moreira FMS, Siqueira JO (1998) Nodulação em leguminosas florestais em viveiros no Sul de Minas Gerais. Cerne 4:145–153

    Google Scholar 

  • Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–227

    Article  CAS  PubMed  Google Scholar 

  • Binkley D, Giardina C (1997) Nitrogen fixation in tropical forest plantations. In: EKS N, Brown AG (eds) Management of Soil, nutrients and water in tropical plantation forests. Australian Centre for International Agricultural Research, Canberra, pp 297–337

    Google Scholar 

  • Boddey RM, Peoples M, Palmer B, Dart P (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosystems 57:235–270

    Article  Google Scholar 

  • Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, Moulin L, Elliott GN, Lacercat-Didier L, Dasilva C et al (2016) Endemic Mimosa species from Mexico prefer alpha-proteobacterial rhizobial symbionts. New Phytol 209:319–333

    Article  CAS  PubMed  Google Scholar 

  • Bouillet JP, Laclau JP, Gonçalves JDM, Moreira MZ, Trivelin PCO et al (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 2: nitrogen accumulation in the stands and biological N2 fixation. For Ecol Manag 255(12):3918–3930

    Article  Google Scholar 

  • Bouillet J-P, Laclau J-P, Gonçalves JLM, Voigtlaender M, Gava JL, Leite FP, Hakamada R, Mareschal L, Mabiala A, Tardy F, Levillain J, Deleporte P, Epron D, Nouvellon Y (2013) Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. Forest Ecology and Management 301:89–101

    Article  Google Scholar 

  • Bournaud C, de Faria SM, dos Santos JMF, Tisseyre P, Silva M, Chaintreuil C, Gross E, James EK, Prin Y, Moulin L (2013) Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae). PLoS One 8:e63478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bournaud C, James EK, de Faria SM, Lebrun M, Melkonian R, Duponnois R, Tisseyre P, Moulin L, Prin Y (2017) Interdependency of efficient nodulation and arbuscular mycorrhization in a Brazilian legume tree . Plant, Cell & Environment.

    Google Scholar 

  • BRAZIL. Ministério da Agricultura, Pecuária e do Abastecimento (2011) INSTRUÇÃO NORMATIVA SDA N° 13, DE 24 DE MARÇO DE 2011. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf

  • Brockwell J, Searle SD, Jeavons AL, Waayers M (2005) Nitrogen fixation in acacias: an untapped resource for sustainable plantations, farm, forestry and land reclamation. ACIAR Monogr 115:132

    Google Scholar 

  • Balieiro FC, Tonini H, Lima RA (2018) Produção Científica Brasileira (2007-2016) sobre Acacia mangium Willd.: estado da arte e reflexões. Cad Ciên Tecnol 35(1):37–52

    Google Scholar 

  • Campelo AB, Dobereiner J (1969) Estudo sobre a inoculação cruzada de algumas leguminosas florestais. Pesq Agrop Brasileira 4:67–72

    Google Scholar 

  • Canosa GA, de Faria SM, de Moraes LFD (2012) Leguminosas florestais da Mata Atlântica brasileira fixadoras de nitrogênio atmosférico Comunicado técnico 144, EMBRAPA Seropédica RJ p 1–12

    Google Scholar 

  • Carvalho PER (2005) Taxi-branco. Embrapa Florestas, Colombo, p 11. Embrapa Florestas. Circular técnica, 111

    Google Scholar 

  • Carvalho WD, Mustin K (2017) The highly threatened and little known Amazonian savannahs. Nat Ecol Evol 1:0100

    Article  Google Scholar 

  • Castro AWV, Yared JAG, Alves RNB, Silva LS, Meirelles SMLB (1990) Comportamento silvicultural de Sclerolobium paniculatum (taxi-branco) no Cerrado amapaense. EMBRAPA-UEPAE Macapá, Macapá, p 4. (EMBRAPA-UEPAE Macapá. Comunicado técnico, 7)

    Google Scholar 

  • Chaer GM, Resende AS, Campello EFC, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31:139–149

    Article  PubMed  Google Scholar 

  • Chalk PM (2016) The strategic role of 15N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis 69:63–80

    Article  CAS  Google Scholar 

  • Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ et al (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol Biochem 73:10–21

    Article  CAS  Google Scholar 

  • Chen W, James EK, Coenye T, Chou J, Barrios E, de Faria SM, Elliott GN et al (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851

    Article  CAS  PubMed  Google Scholar 

  • Clúa J, Roda C, Zanetti M, Blanco F (2018) Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes 9(3):125

    Article  CAS  PubMed Central  Google Scholar 

  • Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM (2018) The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front Plant Sci 8:2229

    Article  PubMed  PubMed Central  Google Scholar 

  • Coelho SRF, Gonçalves JLM, Mello SLM, Moreira RM, Silva EV, Laclau JP (2007) Crescimento, nutrição e fixação biológica de nitrogênio em plantios mistos de eucalipto e leguminosas arbóreas. Pesq Agrop Brasileira 42(6):59–768

    Article  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agri Ecosys Environ Amsterdam 102:279–297

    Article  Google Scholar 

  • de Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the leguminosae. New Phytol 111:607–619

    Article  Google Scholar 

  • de Faria SM, de Lima HC, Olivares FL, Melo RB, Xavier RP (1999) Nodulação em espécies florestais, especificidade hospedeira e implicações na sistemática de leguminosae. Inter-relação fertilidade, biologia do solo e nutrição de plantas. In: Siqueira JO, Moreira FMS, Lopes AS, Guilherme LRG, Faquin V, Neto AEF, Carvalho JG (eds) . Sociedade Brasileira de Ciência do Solo Universidade federal de Lavras, Departamento de Ciência do Solo, Lavras, pp 667–686

    Google Scholar 

  • Delnatte C, Meyer J-Y (2012) Plant introduction, naturalization, and invasion in French Guiana (South America). Biol Invasions 14:915–927

    Article  Google Scholar 

  • Diagne N, Thioulouse J, Sanguin H, Prin Y, Krasova-Wade T, Sylla S, Galiana A, Baudoin E, Neyra M, Svistoonoff S, Lebrun M, Duponnois R (2013) Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biol Biochem 57:468–476

    Article  CAS  Google Scholar 

  • Doyle JJ (2011) Phylogenetic perspectives on the origin of nodulation. Mol Plant Microbe Interact J 24:1289–1295

    Article  CAS  Google Scholar 

  • Doyle JJ (2016) Chasing unicorns: nodulation origins and the paradox of novelty. Am J Bot 103(11):1865–1868

    Article  PubMed  Google Scholar 

  • de Faria SM, Diedhiou AG, de Lima HC, Ribeiro RD, Galiana A, Castilho AF, Henriques JC (2010) Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil. Journal of Experimental Botany 61(11):3119–3127

    Article  CAS  PubMed  Google Scholar 

  • Faria SM, Franco AA, Jesus RM, Menandro MS, Baitello JB, Mucci ESF, Dobereiner J, Sprent JI (1984) New Nodulating Legume Trees From South-East Brazil. New Phytologist 98(2):317–328

    Google Scholar 

  • Faria SMD, McInroy SG, Sprent JI (1987) The occurrence of infected cells, with persistent infection threads, in legume root nodules. Can J Bot 65(3):553–558

    Article  Google Scholar 

  • Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence Of Nodulation In The Leguminosae. New Phytologist 111(4):607–619

    Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL (2005) On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155

    Article  Google Scholar 

  • Forrester DI, Schortemeyer M, Stock WD, Bauhus J, Khanna PK, Cowie AL (2007) Assessing nitrogen fixation in mixed-and single-species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiol 27(9):1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Founoune H, Duponnois R, BÂ AM (2002) Ectomycorrhization of Acacia mangium Willd. and Acacia holosericea A. Cunn. ex G. Don in Senegal. Impact on plant growth, populations of indigenous symbiotic microorganisms and plant parasitic nematodes. J Arid Environ 50:325–332

    Article  Google Scholar 

  • Franco AA, Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29:897–903

    Article  CAS  Google Scholar 

  • Franco AA, Campello EFC, Dias LE, Faria SM (1995) Use of nodulated and mycorrhizal legume trees of revegetation of residues from bauxite mining. In: international symposium on sustainable agriculture for the tropics—the role of biological nitrogen fixation. Embrapa Agrobiologia/Universidade Federal Rural do Rio de Janeiro, Angra dos Reis. Anais. Rio de Janeiro, pp 80–81

    Google Scholar 

  • Galiana A, Balle P, N’guessan kang A, Domenach AM (2002) Nitrogen fixation estimated by the 15N natural abundance method in Acacia mangium Willd. inoculated with Bradyrhizobium sp. and grown in silvicultural conditions. Soil Biol Biochem 34:251–262

    Article  CAS  Google Scholar 

  • Galiana A, Bouillet JP, Ganry F (2004) The importance of the biological nitrogen fixation by trees in agroforestry. In: Carsky RJ, Sanginga N, Schulz S, Douthwaite B (eds) Symbiotic nitrogen fixation: prospects for enhanced application in tropical agriculture. Baba Barkha Nath Printers, New Delhi, pp 185–199

    Google Scholar 

  • Gehring C, Vlek PLG (2004) Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580

    Article  CAS  Google Scholar 

  • Gehring C, Vlek PLG, de Souza LAG, Denich M (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of Central Amazonia. Agric Ecosyst Environ 111:237–2452

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5(1):29–56

    Article  Google Scholar 

  • Griffin AR, Chi NQ, Harbard JL, Son DH, Harwood CE et al (2015) Breeding polyploid varieties of tropical acacias: progress and prospects. South Forests 77(1):41–50

    Article  Google Scholar 

  • Germon A, Guerrini IA, Bordron B, Bouillet J-P, Nouvellon Y, de Moraes Gonçalves JL, Jourdan C, Paula RR, Laclau J-P, (2018) Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m. Plant and Soil 424 (1-2):203–220

    Article  CAS  Google Scholar 

  • Harwood CE, Nambiar EKS (2014) Productivity of acacia and eucalypt plantations in Southeast Asia. 2. Trends and variations. Int For Rev 16(2):249–260

    Google Scholar 

  • He XH, Critchley C, Bledsoe CS (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Review Plant Sci 22:531–567

    Article  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  PubMed  Google Scholar 

  • Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 1009–1024. https://doi.org/10.1002/9781119053095.ch99

    Chapter  Google Scholar 

  • Jesus EC, Schiavo JA, Faria SM (2005) Dependencia de micorrizaspara a nodulaçao de leguminosas arboreas tropicais. Revista Arvore 29:545–552

    Article  Google Scholar 

  • Khanna PK (1998) Nutrient cycling under mixed-species tree systems in Southeast Asia. Agrofor Syst 38:99–120

    Article  Google Scholar 

  • Krisnawati H, Kallio M, Kanninen M (2011) Acacia mangiumWilld.: ecology,silviculture, and productivity. CIFOR, Bogor, Indonesia.

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Laclau JP, Ranger J, de Moraes Gonçalves JL, Maquère V, Krusche AV et al (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259(9):1771–1785

    Article  Google Scholar 

  • Lawrie AC (1981) Nitrogen Fixation by Native Australian Legumes. Australian Journal of Botany 29(2):143

    Article  CAS  Google Scholar 

  • Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard et al (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 17(5):1015–1029

    Article  Google Scholar 

  • Legume Phylogeny Working Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66(1):44–77. https://doi.org/10.12705/661

    Article  Google Scholar 

  • Lim S, Gan K, Tan Y (2011) Properties of Acacia mangium planted in Peninsular Malaysia. In: ITTO project on improving utilization and value adding of plantation timbers from sustainable sources in Malaysia. Selangor: Forest Research Institute of Malaysia. p. 1–6.

    Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas no Brasil. Editora Plantarum, Nova Odessa, p 368

    Google Scholar 

  • Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97

    Article  Google Scholar 

  • Monteiro SEM (1990a) Resposta de leguminosas arbóreas à inoculação com rizóbio e fungos micorrízicos em solo ácido (Tese de Doutorado). Universidade Federal Rural do Rio de Janeiro, Itaguaí, p 221

    Google Scholar 

  • Monteiro SEM (1990b) Resposta de leguminosas arbóreas à inoculação com rizóbio e fungos micorrízicos em solo ácido (Tese de Doutorado). Universidade Federal Rural do Rio de Janeiro, Itaguaí, p 221

    Google Scholar 

  • Moraes Gonçalves JL, Alvares CA, Higa AR, Silva LD, Alfenas AC et al (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27

    Article  Google Scholar 

  • Morais TMO, Montagner AEAD (2015) Infestação por Acacia mangium wild em Sistema Silvipastoril, após fogo no Cerrado Amapaense. I Jornada Cientifíca da Embrapa Amapá

    Google Scholar 

  • Moreira FMS, Siqueira JO (2006) Fixação biológica de nitrogênio atmosférico. In: Moreira FMS, Siqueira JO (eds) Microbiologia e bioquímica do solo. Editora Universidade Federal de Lavras, Lavras, pp 449–542

    Google Scholar 

  • Moreira FM, da Silva MF, Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570

    Article  Google Scholar 

  • Munroe JW, Isaac ME (2014) N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agron Sustain Dev 34:417–427

    Article  Google Scholar 

  • Nardoto GB, Quesada CA, Patiño S, Saiz G, Baker TR, Schwarz M, Schrodt F, Feldpausch TR, Domingues TF, Marimon BS, Marimon B-H, Vieira ICG, Silveira M, Bird MI, Phillips OL, Lloyd J, Martinelli LA (2014) Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil N: N measurements. Plant Ecology & Diversity 7(1-2):173–187

    Google Scholar 

  • Narducci TS (2014) Recuperação de áreas de reserva legal: influência da densidade nos indicadores ambientais do plantio de Sclerolobium paniculatum Vogel. Dissertação (Mestrado em Ciências Ambientais). Instituto de Geociências, Universidade Federal do Pará, Belém-PA, p 77. Programa de Pós-Graduação em Ciências Ambientais

    Google Scholar 

  • Natelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundance in forest soil organic matter. Soil Sci. Soc. Am. J., 52:1633–1640

    Google Scholar 

  • Oliveira Júnior JQ, Jesus EC, Lisboa FJ, Berbarac RLL, Faria SM (2016) Nitrogen-fixing bacteria and arbuscular mycorrhizal fungi in Piptadenia gonoacantha (Mart.) Macbr. Braz J Microbiol 48:95–100

    Article  CAS  Google Scholar 

  • Paula RR, Bouillet J-P, Ocheuze Trivelin PC, Zeller B, Gonçalves JLM, Nouvellon Y, Bouvet J-M, Plassard C, Laclau J-P (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biology and Biochemistry 91:99–108

    Google Scholar 

  • Paula RR, Bouillet J-P, de Moraes Gonçalves JL, Ocheuze Trivelin PC, de C. Balieiro F, Nouvellon Y, de C. Oliveira J, de Deus Júnior JC, Bordron B, Laclau J-P (2018) Nitrogen fixation rate of Acacia mangium Wild at mid rotation in Brazil is higher in mixed plantations with Eucalyptus grandis Hill ex Maiden than in monocultures. Annals of Forest Science 75(1)

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Parrota JA, Knowles OH (1999) Restoring of tropical moist forest on bauxite-mined lands in Brazilian Amazon. Restor Ecol 7(2):103–116

    Article  Google Scholar 

  • Parrota JA, Knowles OH, Wunderle JM Jr (1997) Development of floristic diversity in 10-year-old restoration forests on a bauxite mined site in Amazonia. For Ecol Manag 99:21–42

    Article  Google Scholar 

  • Parrotta JA, Baker DD, Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res 26:1684–1691

    Article  Google Scholar 

  • Patreze CM, Cordeiro L (2004) Nitrogen-fixing and vesicular–arbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimoseae. For Ecol Manag 196:275–285

    Article  Google Scholar 

  • Paula, RR (2015) Processos de transferência de N em curto e longo prazo em plantios mistos de Eucalyptus grandis e Acacia mangium. PhD thesis. São Paulo University

    Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Peoples MB, Faizah AW, Rerkasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. ACIAR monograph, N° 11. ACIAR 1989:76

    Google Scholar 

  • Peoples MB, Palmer B, Lilley DM, Duc LM, Herridge DF (1996) Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182:125–137

    Article  CAS  Google Scholar 

  • Peoples MB, Chalk PM, Unkovich MJ, Boddey RM (2015) Can differences in 15N natural abundance be used to quantify the transfer of nitrogen from legumes to neighbouring non-legume plant species? Soil Biol Biochem 87:97–109

    Article  CAS  Google Scholar 

  • Pires R, Junior FBR, Zilli JE, Fischer D, Hofmann A, James EK, Simon MF (2018) Soil characteristics determine the rhizobia in association with different species of Mimosa in Central Brazil. Plant Soil 423(1–2):411

    Article  CAS  Google Scholar 

  • Piotto D, Montagnini F, Thomas W, Ashton M, Oliver C (2009) Forest recovery after swidden cultivation across a 40-year chronosequence in the Atlantic forest of southern Bahia, Brazil. Plant Ecology 205(2):261–272

    Article  Google Scholar 

  • Polhill RM, Raven PH, Stirton CH (1981) Evolution and systematics of the Leguminosae. In: Polhill RM, Raven PH (eds) Advances in legume systematics. Royal Botanic Gardens, Kew, London, pp 1–26

    Google Scholar 

  • Postgate J (1992) The Leeuwenhoek lecture 1992. Bacterial evolution and the nitrogen fixing plant. Phil Trans R Soc Lond B 338:409–416

    Article  Google Scholar 

  • Rachid CTCC, Balieiro FC, Peixoto RS, Pinheiro YAS, Piccolo MC, Chaer GM, Rosado AS (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biology and Biochemistry 66:146–153

    Article  CAS  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  • Reis FB Jr, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE et al (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186(4):934–946

    Article  CAS  PubMed  Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1992–1208

    Article  Google Scholar 

  • Rolim SG, Piotto D eds. (2018) Silvicultura e tecnologia de espécies da Mata Atlântica. Belo Horizonte, MG: Editora Rona.

    Google Scholar 

  • Sakrouhi I, Belfquih M, Sbabou L, Moulin P, Bena G, Filali-Maltouf A, Le Quéré A (2016) Recovery of symbiotic nitrogen fixing acacia rhizobia from Merzouga Desert sand dunes in South East Morocco – Identification of a probable new species of Ensifer adapted to stressed environments. Systematic and Applied Microbiology 39(2):122–131

    Google Scholar 

  • Santos FM, Balieiro FC, Ataíde DHS, Diniz AR, Chaer GM (2016) Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. Forest Ecol Manag 363:86–97

    Article  Google Scholar 

  • Santos FM, Balieiro F de C, Fontes MA, Chaer GM, (2018) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptusand Acacia mangium. Plant and Soil 423 (1-2):141–155

    Google Scholar 

  • Schiavo JÁ, Martins MA (2002) Produção de mudas de Acácia colonizadas com micorriza e rizóbio em diferentes recipientes. Pesq Agrop Brasileira 38:173–178

    Article  Google Scholar 

  • Silva K, Meyer S, Rouws LF, Farias EM et al (2014) Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga laurina grown in Cerrado soil. Int J Syst Evol Microbiol 64(10):3395–3401

    Article  CAS  PubMed  Google Scholar 

  • Silva VC, Alves PAC, Rhem MFK, dos Santos JMF, James EK, Gross E (2018) Brazilian species of Calliandra Benth. (tribe Ingeae) are nodulated by diverse strains of Paraburkholderia. Syst Appl Microbiol 41(3):241–250

    Article  PubMed  Google Scholar 

  • Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JMA, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC, Azevedo MR (2010) The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management 259(9):1684–1694

    Article  Google Scholar 

  • Souza M, Magliano M, Camargos J (1997) Madeiras tropicais brasileiras. IBAMA. Laboratório de Produtos Florestais, Brasília, DF, p 152

    Google Scholar 

  • Souza MH, Magliano MM, Camargos JAA, Souza MR (2002) Madeira tropicais brasileiras, 2nd edn. LPF/IBAMA, Brasília, p 152

    Google Scholar 

  • Souza AO, Chaves MPSR, Barbosa RI, Clement CR (2018) Local ecological knowledge concerning the invasion of Amerindian lands in the northern Brazilian Amazon by Acacia mangium (Willd.). J Ethnobiol Ethnomed 14:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprent JI (1993) The role of the nitrogen fixation in primary succession on land. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell Scientific, Oxford, pp 209–219

    Google Scholar 

  • Sprent JI (1994) Evolution and diversity in the legume-rhizobium symbiosis: chaos theory? Plant Soil 161:1–10

    Article  Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25. https://doi.org/10.1111/j.1469-8137.2007.02015.x

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. Wiley-Blackwell, West Sussex. https://doi.org/10.1002/9781444316384

    Book  Google Scholar 

  • Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 215:40–56

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JM, Sprent LI (1993) Nitrogen fixation by legume trees. In: Subba Rao NS, Rodriguez-Barrueco C (eds) Symbioses in nitrogen-fixing trees. Oxford/IBH, New Delhi, pp 32–63

    Google Scholar 

  • Tchichelle SV, Epron D, Mialoundama F, Koutika LS, Harmand J-M, Bouillet J-P, Mareschal L, (2016) Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and plantation on a sandy tropical soil. Southern Forests: a Journal of Forest Science 79(1):1–8

    Google Scholar 

  • Tchichelle SV, Mareschal L, Koutika LS, Epron D (2017) Biomass production, nitrogen accumulation and symbiotic nitrogen fixation in a mixed-species plantation of eucalyptus and acacia on a poor tropical soil. Forest Ecol Management 403:103–111

    Article  Google Scholar 

  • Tonini H, Angelo DH, Conceicao JS, Herzog FA (2010) Silvicultura da Acacia mangium em Roraima. In: Tonini H, HalfelD-VIeira BA, SJR S (eds) Acacia mangium: características e seu cultivo em Roraima. Embrapa Informação Tecnológica e Embrapa Roraima, Brasília e Boa Vista, pp 76–9

    Google Scholar 

  • Unkovich MJ, Herridge D, Peoples MB, Cadisch G, Boddey B, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems (ACIAR Monograph, 136). Australian Centre for International Agricultural Research, Canberra, p 258

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific, Oxford, p 164

    Google Scholar 

  • Vitousek PM et al (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Voigtlaender M, Laclau J-P, Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet J-P (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant and Soil 352(1-2):99–111

    Article  CAS  Google Scholar 

  • Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet J-P, Gonçalves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR, Laclau J-P (2018) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. Ann For Sci 75:14. https://doi.org/10.1007/s13595-018-0695-9

    Article  Google Scholar 

  • Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet J-P et al (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. For Ecol Manag 436:56–67

    Article  Google Scholar 

  • Winbourne JB, Feng A, Reynolds L, Piotto D, Hastings MG, Porder S (2018) Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil. Scientific Reports 8(1)

    Google Scholar 

  • Yasmin K, Cadisch G, Baggs EM (2006) Comparing 15N-labelling techniques for enriching above- and below-ground components of the plant-soil system. Soil Biol Biochem 38:397–400

    Article  CAS  Google Scholar 

  • Zilli JE, Baraúna AC, da Silva K, de Meyer SE, Farias ENC, Kaminski PE, da Costa IB, Ardley JK, Willems A, Camacho NN et al (2014) Bradyrhizobium neotropical sp. nov., isolate from effective nodules of Centrolobium paraense. Int J Syst Evol Microbiol 64:3950–3957

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerri Edson Zilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Faria, S.M., de Carvalho Balieiro, F., Paula, R.R., Santos, F.M., Zilli, J.E. (2020). Biological Nitrogen Fixation (BNF) in Mixed-Forest Plantations. In: Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A. (eds) Mixed Plantations of Eucalyptus and Leguminous Trees. Springer, Cham. https://doi.org/10.1007/978-3-030-32365-3_6

Download citation

Publish with us

Policies and ethics