Skip to main content

Litter Decomposition and Soil Carbon Stocks in Mixed Plantations of Eucalyptus spp. and Nitrogen-Fixing Trees

  • Chapter
  • First Online:
Mixed Plantations of Eucalyptus and Leguminous Trees

Abstract

The soil organic carbon (SOC) affects many soil processes and properties, and its accumulation is generally higher in soils under nitrogen-fixing tree species than under non-fixing ones. This chapter discusses the main drivers of decomposition and soil C stabilization, with particular attention to Eucalyptus spp. and Acacia mangium mixed plantations. Changes in nutrient cycling (especially N and P by litterfall) and litter quality affecting the activity of the decomposer communities are presented as well as improved management practices to overcome environmental restraint with biological resources. Although N deposition is high in pure and increases in mixed plantations with Acacia, this is not a guarantee of higher litter decomposition. Similarly, the high internal P recycling impairs the decomposition process by unfavorable stoichiometric ratios of its leaf litter. The complementarity in nutrient deposition (e.g., N and P deposition), in soil bacterial and fungi communities, and the segregation of fine root growth in the soil profile are favorable for C stabilization. However, no significant difference in the soil C stocks was detected for mixed plantations in relation to monocultures of Eucalypt. Better results are achieved by genetic manipulation, planting arrangements, and managing the harvest residue practices to improve soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade AG, Costa GS, Faria SM (2000) Deposição e decomposição da serapilheira em povoamentos de Mimosa caesalpiniifolia, Acacia mangium e Acacia holosericea com quatro anos de idade em planossolo. Revista Brasileira de Ciência do Solo 24(4):777–785

    Google Scholar 

  • Assis PCR, Stone LF, Medeiros JC et al (2015) Atributos físicos do solo em sistemas de integração lavoura-pecuária-floresta. Rev Bras Eng Agr Amb 19:309–316

    Article  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    Article  CAS  PubMed  Google Scholar 

  • Bachega LR, Bouillet J-P, de Cássia Piccolo M et al (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. Forest Ecol Manag 359:33–43

    Article  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Balieiro F d C, Dias LE, Franco AA et al (2005) Acúmulo de nutrientes na parte aérea, na serapilheira acumulada sobre o solo e decomposição de filódios de Acacia mangium Willd. Cienc Florest 14:59–65

    Article  Google Scholar 

  • Balieiro F d C, Franco AA, Pereira MG et al (2004) Contribution of litter and nitrogen to soil under Pseudosamanea guachapele and Eucalyptus grandis plantations. Pesqui Agropecu Bras 39:597–601

    Article  Google Scholar 

  • Balieiro F d C, Pereira MG, Alves BJR et al (2008) Soil carbon and nitrogen in pasture soil reforested with eucalyptus and guachapele. Rev Bras Cienc Solo 32:1253–1260

    Article  CAS  Google Scholar 

  • Balieiro FC, Franco AA, Pereira MG, Campello EF, Faria SM, Dias LE (2010) Alves BJR Acúmulo e distribuição de biomassa e nutrientes na parte aérea de Pseudosamanea guachapele e Eucalyptus grandis em consórcio e monocultivos. Embrapa Solos, Rio de Janeiro. Boletim de Pesquisa

    Google Scholar 

  • Berg B (2018) Decomposing litter, limit values, humus accumulation, locally and regionally. Appl Soil Ecol 123:494–508

    Article  Google Scholar 

  • Bernhard Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4:161–172

    Article  Google Scholar 

  • Bhatti JS, Comerford NB, Johnston CT (1998) Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a spodic horizon. Soil Sci Soc Am J 62:1089–1095

    Article  CAS  Google Scholar 

  • Bini D, Figueiredo AF, da Silva MCP et al (2013) Microbial biomass and activity in litter during the initial development of pure and mixed plantations of Eucalyptus grandis and Acacia mangium. Rev Bras Cienc Solo 37:76–85

    Article  CAS  Google Scholar 

  • Binkley D, Dunkin KA, DeBell D, Ryan MG (1992) Production and nutrient cycling in mixed plantations of eucalyptus and albizia in Hawaii. For Sci 38:393–408

    Google Scholar 

  • Binkley D, Ryan MG (1998) Net primary production and nutrient cycling in replicated stands of Eucalyptus saligna and Albizia falcataria. For Ecol Manag 112:79–85

    Article  Google Scholar 

  • Binkley D, Giardina C, Bashkin MA (2000) Soil phosphorus pools and supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia facaltaria. For Ecol Manag 128:241–247

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. https://doi.org/10.1126/science.1155121

    Article  CAS  PubMed  Google Scholar 

  • Bouillet J-P, Laclau J-P, Gonçalves JL de M et al (2013) Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. For Ecol Manag 301:89–101. https://doi.org/10.1016/j.foreco.2012.09.019

    Article  Google Scholar 

  • Bowen GD, Nambiar ES (1984) Nutrition of plantation forests. Academic, London

    Google Scholar 

  • Briones MJI, Ineson P (1996) Decomposition of eucalyptus leaves in litter mixtures. Soil Biol Biochem 28:1381–1388

    Article  CAS  Google Scholar 

  • Cannell MGR (1989) Physiological basis of wood production: A review. Scand J Forest Res 4:459–490. https://doi.org/10.1080/02827588909382582

    Article  Google Scholar 

  • Cantarutti RB, Barros ND, Martinez HEP, Novais RF (2007) Avaliação da fertilidade do solo e recomendação de fertilizantes. Fertilidade do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 769–850

    Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC et al (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Change Biol 21:3200–3209. https://doi.org/10.1111/gcb.12982

    Article  Google Scholar 

  • Chaer GM, Tótola MR (2007) Impact of organic residue management on soil quality indicators during replanting of eucalypt stands. Rev Bras Cienc Solo 31:1381–1396. https://doi.org/10.1590/S0100-06832007000600016

    Article  CAS  Google Scholar 

  • Cook RL, Binkley D, Stape JL (2016) Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. For Ecol Manag 359:92–98

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  • Costa GS, de Andrade AG, de Faria SM (1998) Aporte de nutrientes pela serapilheira de Mimosa caesalpiniifolia (Sabiá) com seis anos de idade. In: 3 Simpósio Nacional de Recuperação de Áreas Degradadas

    Google Scholar 

  • Costa GS, da Gama-Rodrigues AC, Cunha GdM (2005) Decomposição e liberação de nutrientes da serapilheira foliar em povoamentos de Eucalyptus grandis no norte fluminense. Revista Árvore 29(4):563–570

    Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM et al (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19:988–995. https://doi.org/10.1111/gcb.12113

    Article  Google Scholar 

  • de Campos M, Antonangelo JA, Alleoni LRF (2016) Phosphorus sorption index in humid tropical soils. Soil Till Res 156:110–118. https://doi.org/10.1016/j.still.2015.09.020

    Article  Google Scholar 

  • Davidson EA, Hirsch AI (2001) Fertile forest experiments. Nature 411:431–433

    Article  CAS  PubMed  Google Scholar 

  • Denef K, Six J (2005) Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur J Soil Sci 56:469–479

    Article  CAS  Google Scholar 

  • Denef K, Six J, Paustian K, Merckx R (2001) Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry-wet cycles. Soil Biol Biochem 33:2145–2153

    Article  CAS  Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868. https://doi.org/10.1016/j.ecolecon.2010.05.002

    Article  Google Scholar 

  • Donagemma GK, Ruiz HA, Alvarez VVH et al (2008) Fósforo remanescente em argila e silte retirados de Latossolos após pré-tratamentos na análise textural. Rev Bras Cienc Solo 32:1785–1791. https://doi.org/10.1590/S0100-06832008000400043

    Article  CAS  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment, SSSA Special Publication, vol 35. Soil Science Society of America/The American Society of Agronomy, Madison, pp 1–21

    Chapter  Google Scholar 

  • Doughty CE, Santos-Andrade PE, Shenkin A et al (2018) Tropical forest leaves may darken in response to climate change. Nature Ecol Evol 2(12):1918. https://doi.org/10.1038/s41559-018-0716-y

    Article  Google Scholar 

  • Epron D, Marsden C, ThongoM’Bou A et al (2009) Soil carbon dynamics following afforestation of a tropical savannah with Eucalyptus in Congo. Plant Soil 323:309–322. https://doi.org/10.1007/s11104-009-9939-7

    Article  CAS  Google Scholar 

  • Epron D, Nouvellon Y, Mareschal L et al (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: Two case-studies in contrasting tropical environments. Forest Ecol Manag 301:102–111. https://doi.org/10.1016/j.foreco.2012.10.034

    Article  Google Scholar 

  • Fanin N, Bertrand I (2016) Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biol Biochem 94:48–60. https://doi.org/10.1016/j.soilbio.2015.11.007

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization – FAO (2015) Global forest resources assessment 2015: How have the world’s forests changed? FAO, Rome, p 253

    Google Scholar 

  • Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Chang 46:115–158. https://doi.org/10.1023/A:1005569915357

    Article  CAS  Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116. https://doi.org/10.1016/S0016-7061(97)00039-6

    Article  CAS  Google Scholar 

  • Ferreira RLC, Lira Junior M d A, da Rocha MS, dos Santos MVF, Lira M d A, Barreto LP (2007) Deposição e acúmulo de matéria seca e nutrientes em serapilheira em um bosque de sabiá (Mimosa caesalpiniifolia Benth.). Revista Árvore 31(1):7–12

    Article  CAS  Google Scholar 

  • Fialho RC, Zinn YL (2014) Changes in soil organic carbon under eucalyptus plantations in Brazil: a comparative analysis. Land Degrad Develop 25:428–437. https://doi.org/10.1002/ldr.2158

    Article  Google Scholar 

  • Fisk M, Santangelo S, Minick K (2015) Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biol Biochem 81:212–218. https://doi.org/10.1016/j.soilbio.2014.11.022

    Article  CAS  Google Scholar 

  • Forrester DI, Cowie AL, Bauhus J et al (2006) Effects of changing the supply of nitrogen and phosphorus on growth and interactions between Eucalyptus globulus and Acacia mearnsii in a Pot trial. Plant Soil 280:267–277. https://doi.org/10.1007/s11104-005-3228-x

    Article  CAS  Google Scholar 

  • Forrester DI, Pares A, O’Hara C et al (2013) Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing acacia. Ecosystems 16:123–132. https://doi.org/10.1007/s10021-012-9600-9

    Article  CAS  Google Scholar 

  • Fortes JLO (2000) Reabilitação de depósito de rejeito do refino de bauxita com o uso de resíduos industriais e leguminosas arbóreas. Tese, Universidade Federal do Rural do Rio de Janeiro

    Google Scholar 

  • Franzluebbers AJ (2002) Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Till Res 66:197–205. https://doi.org/10.1016/S0167-1987(02)00027-2

    Article  Google Scholar 

  • Fraser LH, Pither J, Jentsch A et al (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349:302–305. https://doi.org/10.1126/science.aab3916

    Article  CAS  PubMed  Google Scholar 

  • Froufe LCM (1999) Decomposição de serapilheira e aporte de nutrientes em plantios puros e consorciados de eucalyptus grandis maiden, pseudosamanea guachapele dugand e acacia mangium willd. Tese, Universidade Federal Rural do Rio de Janeiro

    Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–765. https://doi.org/10.1046/j.1365-2486.2000.00349.x

    Article  Google Scholar 

  • Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: An ecological approach to agriculture. Plant Soil 174(1–2):255–277

    Google Scholar 

  • Gonçalves JL d M, Alvares CA, Higa AR et al (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecol and Manag 301:6–27. https://doi.org/10.1016/j.foreco.2012.12.030

    Article  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x

    Article  PubMed  Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87. https://doi.org/10.1023/A:1004213929699

  • Hättenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965. https://doi.org/10.1111/j.1469-8137.2010.03483.x

    Article  PubMed  Google Scholar 

  • Hoosbeek MR, Scarascia-Mugnozza GE (2009) Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO2 enrichment (FACE): final results of POP-EuroFACE compared to other forest FACE experiments. Ecosystems 12:220–239. https://doi.org/10.1007/s10021-008-9219-z

    Article  CAS  Google Scholar 

  • van Huysen TL, Perakis SS, Harmon ME (2016) Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant Soil 406:1–14. https://doi.org/10.1007/s11104-016-2857-6

    Article  CAS  Google Scholar 

  • IBA (2017). Relatório Ibá 2017

    Google Scholar 

  • Inagaki M, Kamo K, Miyamoto K et al (2011) Nitrogen and phosphorus retranslocation and N:P ratios of litterfall in three tropical plantations: luxurious N and efficient P use by Acacia mangium. Plant Soil 341:295–307. https://doi.org/10.1007/s11104-010-0644-3

    Article  CAS  Google Scholar 

  • Inagaki M, Kamo K, Titin J et al (2010) Nutrient dynamics through fine litterfall in three plantations in Sabah, Malaysia, in relation to nutrient supply to surface soil. Nutr Cycl Agroecosyst 88:381–395. https://doi.org/10.1007/s10705-010-9364-6

    Article  Google Scholar 

  • IPNI (2012) In: Bruulsema TW, Fixen PE, Sulewski GD (eds) 4R Plant nutrition manual: a manual for improving the management of plant nutrition. International Plant Nutrition Institute, Norcross, GA. http://www.ipni.net/article/IPNI-3255 (22 November 2017)

    Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104(3):399–417

    Google Scholar 

  • Jesus GL d, Silva IR, Almeida LFJ et al (2015) Produtividade do eucalipto, atributos físicos do solo e frações da matéria orgânica influenciadas pela intensidade de tráfego e resíduos de colheita. Rev Bras Cienc Solo 39:1190–1203. https://doi.org/10.1590/01000683rbcs20140494

    Article  Google Scholar 

  • Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of eucalyptus and albizia trees. Ecology 81:3267–3273. https://doi.org/10.1890/0012-9658(2000)081[3267:NACDIA]2.0.CO;2

    Article  Google Scholar 

  • Kindel A, Garay I, do CCAFS, Lima JA de S (2003) Quantificação dos horizontes húmicos e dinâmica da decomposição de material foliar em solos florestais. Comunicado Técnico EMBRAPA 1:1–8

    Google Scholar 

  • Kirkby CA, Kirkegaard JA, Richardson AE et al (2011) Stable soil organic matter: A comparison of C:N:P:S ratios in Australian and other world soils. Geoderma 163:197–208. https://doi.org/10.1016/j.geoderma.2011.04.010

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ et al (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409. https://doi.org/10.1016/j.soilbio.2013.09.032

    Article  CAS  Google Scholar 

  • Koutika L-S, Epron D, Bouillet J-P, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:205–216. https://doi.org/10.1007/s11104-014-2047-3

    Article  CAS  Google Scholar 

  • Koutika L-S, Mareschal L (2017) Acacia and eucalypt change P, N and C concentrations in POM of Arenosols in the Congolese coastal plains. Geoderma Reg 11:37–43. https://doi.org/10.1016/j.geodrs.2017.07.009

    Article  Google Scholar 

  • Koutika L-S, Richardson DM (2019) Acacia mangium Willd.: benefits and threats associated with its increasing use around the world. Forest Ecosyst 6:2. https://doi.org/10.1186/s40663-019-0159-1

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Laclau J-P, de MoraesGonçalves JL, Stape JL (2013) Perspectives for the management of eucalypt plantations under biotic and abiotic stresses. For Ecol Manage 301:1–5

    Google Scholar 

  • Laclau J-P, Ranger J, de MoraesGonçalves JL et al (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: Main features shown by intensive monitoring in Congo and Brazil. Forest Ecol and Manag 259:1771–1785. https://doi.org/10.1016/j.foreco.2009.06.010

    Article  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. Forest Ecol and Manag 220:242–258. https://doi.org/10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  • Landsberg JJ, Gower ST (1997) Soil organic matter and decomposition (Chapter 6). In: Landsberg JJ, Gower ST (eds) Applications of physiological ecology to forest management. Academic, San Diego, pp 161–184

    Chapter  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA et al (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. https://doi.org/10.1038/ncomms7707

    Article  CAS  PubMed  Google Scholar 

  • Leal JR, Velloso ACX (1973) Adsorção de fosfato em latossolos sob vegetação de cerrado. Pesqui Agropecu Bras 8:81–88

    CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. https://doi.org/10.1038/nature16069

    Article  CAS  PubMed  Google Scholar 

  • Leite FP, Barros NF, Novais RF, Fabres AS (1998) Acúmulo e distribuição de nutrientes em Eucalyptus grandis sob diferentes densidades populacionais. Rev Bras Cienc Solo 22:419–426. https://doi.org/10.1590/S0100-06831998000300007

    Article  CAS  Google Scholar 

  • Lima AMN, Silva IR, Neves JCL et al (2006) Soil organic carbon dynamics following afforestation of degraded pastures with eucalyptus in southeastern Brazil. Forest Ecol and Manag 235:219–231. https://doi.org/10.1016/j.foreco.2006.08.331

    Article  Google Scholar 

  • Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001) Should phosphorus availability be constraining moist tropical forest responses to increasing CO2 concentrations? In: Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 95–114

    Chapter  Google Scholar 

  • Malhi Y, Wood D, Baker TR et al (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol 12:1107–1138. https://doi.org/10.1111/j.1365-2486.2006.01120.x

    Article  Google Scholar 

  • Maquere V, Laclau JP, Bernoux M et al (2008) Influence of land use (savanna, pasture, Eucalyptus plantations) on soil carbon and nitrogen stocks in Brazil. Eur J Soil Sci 59:863–877. https://doi.org/10.1111/j.1365-2389.2008.01059.x

    Article  CAS  Google Scholar 

  • Marklein AR, Winbourne JB, Enders SK et al (2016) Mineralization ratios of nitrogen and phosphorus from decomposing litter in temperate versus tropical forests. Glob Ecol Biogeogr 25:335–346. https://doi.org/10.1111/geb.12414

    Article  Google Scholar 

  • Mochiutti S, de Queiroz JAL, Junior NJM (2006) Produção de serapilheira e retorno de nutrientes de um povoamento de taxi-branco e de uma floresta secundária no Amapá. Boletim de Pesquisa Florestal, Colombo, pp 3–20

    Google Scholar 

  • Motta PEF, Curi N, Siqueira JO, Van Raij B, Neto AEF, Lima JM (2002) Adsorção e formas de fósforo em latossolos: influência da mineralogia e histórico de uso. Revista Brasileira de Ciência do Solo 26(2):349–359

    Google Scholar 

  • Negi JD, Sharma SC (1996) Mineral nutrition and resource conservation in Eucalyptus plantation and other forest covers in India. In: Attwill PM, Adams MA (eds) Nutrition of eucalyptus. CSIRO, Collingwood, pp 399–416

    Google Scholar 

  • Nottingham AT, Whitaker J, Turner BL et al (2015) Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. Bio Science 65:906–921. https://doi.org/10.1093/biosci/biv109

    Article  Google Scholar 

  • Nouvellon Y, Laclau J-P, Epron D et al (2012) Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil. Tree Physiol 32:680–695. https://doi.org/10.1093/treephys/tps041

    Article  CAS  PubMed  Google Scholar 

  • Novais RF, Barros N (1997) Sustainable agriculture and forestry production systems on acid soils: Phosphorus as a case-study. In: Moniz AC, Furlani AMC, Schaffert RE, Fageria NK, Rosolem CA, Cantarella H (eds) Plant-soil interactions as low pH: Sustainable agriculture and forestry production, Viçosa, pp 39–51

    Google Scholar 

  • Novotny EH, Rodrigues AF, Balieiro F de C et al (2013) Avaliação das alterações estruturais da serapilheira de florestas plantadas em decomposição por meio da espectroscopia vibracional (FTIR) aliada à análise de componentes principais (PCA). In: Embrapa Solos-Resumo em anais de congresso (ALICE)

    Google Scholar 

  • Ometto JC (1981) Bioclimatologia vegetal. Agronomica Ceres, Sao Paulo

    Google Scholar 

  • Oorts K, Vanlauwe B, Cofie OO et al (2000) Charge characteristics of soil organic matter fractions in a Ferric Lixisol under some multipurpose trees. Agrofor Syst 48:169

    Article  Google Scholar 

  • Pandey R, Zinta G, AbdElgawad H et al (2015) Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol Adv 33:303–316. https://doi.org/10.1016/j.biotechadv.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. For Ecol Manage 124(1):45–77

    Google Scholar 

  • Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W et al (2015) Changes in planted forests and future global implications. Forest Ecol and Manag 352:57–67

    Article  Google Scholar 

  • Pereira AP d A, de Andrade PAM, Bini D et al (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12:e0180371. https://doi.org/10.1371/journal.pone.0180371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponge J-F (2013) Plant–soil feedbacks mediated by humus forms: A review. Soil Biol Biochem 57:1048–1060. https://doi.org/10.1016/j.soilbio.2012.07.019

    Article  CAS  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Qiao Y, Miao S, Silva LCR, Horwath WR (2014) Understory species regulate litter decomposition and accumulation of C and N in forest soils: A long-term dual-isotope experiment. Forest Ecol and Manag 329:318–327. https://doi.org/10.1016/j.foreco.2014.04.025

    Article  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M et al (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541. https://doi.org/10.5194/bg-7-1515-2010

    Article  CAS  Google Scholar 

  • Rachid CTCC, Balieiro FC, Fonseca ES et al (2015) Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations. PLoS One 10:e0118515. https://doi.org/10.1371/journal.pone.0118515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachid CTCC, Balieiro FC, Peixoto RS et al (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol Biochem 66:146–153. https://doi.org/10.1016/j.soilbio.2013.07.005

    Article  CAS  Google Scholar 

  • Rachid CTCC (2013) Biodisponibilidade de nutrientes e estrutura microbiana do sistema solo-serapilheira em floresta plantada mista de Eucalyptus urograndis e Acacia mangium. Universidade Federal do Rio de Janeiro, Rio de Janeiro, p 115. (PhD in Science Thesis)

    Google Scholar 

  • Raven JA, Franco AA, de Jesus EL, Jacob-Neto J (1990) H+ extrusion and organic-acid synthesis in N2-fixing symbioses involving vascular plants. New Phytol 114:369–389. https://doi.org/10.1111/j.1469-8137.1990.tb00405.x

    Article  CAS  PubMed  Google Scholar 

  • Reis MDGF, Barros NF (1990) Ciclagem de nutrientes em plantio de eucalipto. In: de Barros NF, de Novaes RF (eds) Relação Solo-Eucalipto. Centro de ciências agrárias, Viçosa

    Google Scholar 

  • Reis MDGF, Kimmins JP, de Rezende GC, de BNF (1985) Acumulo de biomassa em uma sequência de idade de Eucalyptus grandis plantado no cerrado em duas áreas com diferentes produtividades. Rev Arvore:149–162

    Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with eucalyptus species. Ecosystems 5:217–231. https://doi.org/10.1007/s10021-001-0067-3

    Article  CAS  Google Scholar 

  • Rigatto PA, Dedecek RA, Mattos JLM (2005) Influência dos atributos do solo sobre a produtividade de Pinus taeda. Revi Árv 29:701–709. https://doi.org/10.1590/S0100-67622005000500005

    Article  CAS  Google Scholar 

  • Rocha PV, Ataíde DHS, Lima JSS, Santos FM, Chaer GM, Balieiro FC (2019) Preparo do solo e leguminosa arbórea fixadora de N2 consorciada com eucalipto afetam os estoques de carbono e nitrogênio de solo arenoso. Simpósio Brasileiro de Solos Arenosos, III, Campo Grande

    Google Scholar 

  • Roscoe R, Machado PLOA (2002) Fracionamento físico do solo em estudos da matéria orgânica. Embrapa Agropecuária Oeste, Dourados, p 86

    Google Scholar 

  • Sanchez P (1979) Soil fertility and conservations for agroforestry systems in the humid tropics of Latin America. In: O M PAH (ed) Soils research in agroforestry. ICRAF, Nairobi

    Google Scholar 

  • Sanches PA (1997) Changing tropical soil fertility paradigms: from Brazil to Africa and back. In: Moniz AC, Furlani AMC, Schaffert RE, Fageria NK, Rosolem CA, Cantarella H (eds) Plant-soil interactions at low pH: sustainable agriculture and forestry production. Viçosa, Sociedade Brasileira de Ciência do Solo, pp 19–28

    Google Scholar 

  • Sands R, Mulligan DR (1990) Water and nutrient dynamics and tree growth. Forest Ecol Manag 30:91–111. https://doi.org/10.1016/0378-1127(90)90129-Y

    Article  Google Scholar 

  • Santana GS, Knicker H, González-Vila FJ et al (2015) The impact of exotic forest plantations on the chemical composition of soil organic matter in Southern Brazil as assessed by Py–GC/MS and lipid extracts study. Geoderma Reg 4:11–19. https://doi.org/10.1016/j.geodrs.2014.11.004

    Article  Google Scholar 

  • Santana RC, de Barros NF, Novais RF et al (2008) Alocação de nutrientes em plantios de eucalipto no Brasil. Rev Bras Cien Solo 32:2723–2733. https://doi.org/10.1590/S0100-06832008000700016

    Article  CAS  Google Scholar 

  • Santos FM, Balieiro F de C, Ataíde DH dos S et al (2016) Dynamics of above ground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian Sandy soil. Forest Ecol Manag 363:86–97. https://doi.org/10.1016/j.foreco.2015.12.028

    Article  Google Scholar 

  • Santos FM, Balieiro F de C, Fontes MA, Chaer GM (2018) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant Soil 423:141

    Article  CAS  Google Scholar 

  • Santos FM, Chaer GM, Diniz AR, Balieiro F de C (2017) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. Forest Ecol Manag 384:110–121. https://doi.org/10.1016/j.foreco.2016.10.041

    Article  Google Scholar 

  • Scheidegger A, Borkovec M, Sticher H (1993) Coating of silica sand with goethite: preparation and analytical identification. Geoderma 58:43–65. https://doi.org/10.1016/0016-7061(93)90084-X

    Article  CAS  Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466. https://doi.org/10.1038/35078060

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56

    Article  CAS  PubMed  Google Scholar 

  • Senesi N, Loffredo E (1999) The chemistry of soil organic matter. In: Sparks DL (ed) Soil physical chemistry, pp 239–370

    Google Scholar 

  • Silva LCR, Corrêa RS, Doane TA et al (2013) Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecol Appl 23:1345–1356. https://doi.org/10.1890/12-1957.1

    Article  PubMed  Google Scholar 

  • Silva CF, Carmo ER, Martins MA, Freitas MSM, Pereira MG, Silva EMR (2015) Deposition and nutritional quality of the litter of pure stands of Eucalyptus camaldulensis and Acacia mangium. Biosci J 31:1081–1091

    Article  Google Scholar 

  • Silva EV, Goncalves JLM, Coelho SRF, Moreira RM, Mello SLM, Bouillet J-P, Jourdan C, Laclau J-P (2009) Dynamics of fine root distribution after establishment of monospecific and mixed species plantations of Eucalyptus grandis and Acacia mangium. Plant Soil 325:305–318

    Article  CAS  Google Scholar 

  • Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12(1):46–53

    Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105. https://doi.org/10.1016/S0016-7061(96)00036-5

    Article  Google Scholar 

  • de Souza MJH, Ribeiro A, Leite HG et al (2006) Disponibilidade hídrica do solo e produtividade do eucalipto em três regiões da Bacia do Rio Doce. Revista Árvore 30(3):399–410

    Google Scholar 

  • Stape JL, Binkley D, Ryan MG et al (2010) The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production. For Ecol Manag 259:1684–1694. https://doi.org/10.1016/j.foreco.2010.01.012

    Article  Google Scholar 

  • Stape JL, Binkley D, Ryan MG, do Nascimento Gomes A (2004) Water use, water limitation, and water use efficiency in a Eucalyptus plantation. Bosque 25(2)

    Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles101. Ecology 80:1455–1474. https://doi.org/10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops J et al (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. https://doi.org/10.1126/science.1060391

    Article  CAS  PubMed  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  • Vadez V, Lim G, Durand P, Diem HG (1995) Comparative growth and symbiotic performance of four Acacia mangium provenances from Papua New Guinea in response to the supply of phosphorus at various concentrations. Biol Fertil Soils 19(1):60–64

    Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127(2):390–397

    Google Scholar 

  • Venterink HO (2011) Legumes have a higher root phosphatase activity than other forbs, particularly under low inorganic P and N supply. Plant Soil 347(1–2):137–146

    Google Scholar 

  • Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Voigtlaender M (2012) Produção de biomassa aérea e ciclagem de nitrogênio em consórcio de genótipos de Eucalyptus com Acacia mangium. Universidade de São Paulo, São Paulo

    Book  Google Scholar 

  • Voigtlaender M, Brandani CB, Caldeira DRM et al (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. Forest Ecol Manag 436:56–67. https://doi.org/10.1016/j.foreco.2018.12.055

    Article  Google Scholar 

  • Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol 18:633–644. https://doi.org/10.1093/treephys/18.8-9.633

    Article  PubMed  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR (2009) Controls over leaf litter decomposition in wet tropical forests. Ecology 90:3333–3341. https://doi.org/10.1890/08-2294.1

    Article  PubMed  Google Scholar 

  • Withers PJA, Rodrigues M, Soltangheisi A et al (2018) Transitions to sustainable management of phosphorus in Brazilian agriculture. Sci Rep-UK 8:2537. https://doi.org/10.1038/s41598-018-20887-z

    Article  CAS  Google Scholar 

  • Zhou W-J, Sha L-Q, Schaefer DA et al (2015) Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biol Biochem 81:255–258. https://doi.org/10.1016/j.soilbio.2014.11.019

    Article  CAS  Google Scholar 

  • Zhou Z, Zhang Z, Zha T et al (2013) Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biol Biochem 57:135–143. https://doi.org/10.1016/j.soilbio.2012.08.010

    Article  CAS  Google Scholar 

  • Zinn YL, Resck DVS, da Silva JE (2002) Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. Forest Ecol Manag 166:285–294. https://doi.org/10.1016/S0378-1127(01)00682-X

    Article  Google Scholar 

Download references

Acknowledgments

To the National Council for Scientific and Technological Development (CNPq) for the Productivity Grant given to the first author. We also thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for the financial support of our research, the field work and laboratory analyses and to Coordination of Superior Level Staff Improvement (CAPES) for the grants to the students involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano de Carvalho Balieiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Carvalho Balieiro, F., Cesário, F.V., Santos, F.M. (2020). Litter Decomposition and Soil Carbon Stocks in Mixed Plantations of Eucalyptus spp. and Nitrogen-Fixing Trees. In: Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A. (eds) Mixed Plantations of Eucalyptus and Leguminous Trees. Springer, Cham. https://doi.org/10.1007/978-3-030-32365-3_4

Download citation

Publish with us

Policies and ethics