Skip to main content

Few-Nucleon Reactions in Underground Laboratory

  • Conference paper
  • First Online:
Recent Progress in Few-Body Physics (FB22 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 238))

Included in the following conference series:

  • 1014 Accesses

Abstract

Accurate knowledge of thermonuclear reaction rates is important in understanding the generation of energy, the luminosity of neutrinos, and the synthesis of elements in stars. The LUNA Collaboration (Costantini et al. in Rep Prog Phys 72:086301, 2009; Broggini et al. in Annu Rev Nucl Part Sci 60:53–73, 2010) has shown how going underground and using the typical techniques of low background physics allows to measure nuclear cross sections at or close to energies relevant for the nucleosynthesis inside stars. This contribution will outline the general features of resonant and non resonant few nucleon reactions studied with stable beam including an overview of the experimental techniques adopted in underground nuclear astrophysics. Moreover, it will present a summary of the main recent results and achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As a general notation in this work, \(E_{R,lab}\) is the resonance energy in the laboratory system, while \(E_{r}\) is the resonance energy in the center of mass system.

  2. 2.

    Laboratory for Underground Nuclear Astrophysics; http://luna.lngs.infn.it.

  3. 3.

    http://www.lngs.infn.it.

  4. 4.

    Resonance energies are given in the center-of-mass system.

References

  1. Costantini, H., Formicola, A., Imbriani, G., et al.: LUNA: a laboratory for underground nuclear astrophysics. Rep. Prog. Phys. 72, 086301 (2009). https://doi.org/10.1088/0034-4885/72/8/086301

    Article  ADS  Google Scholar 

  2. Broggini, C., Bemmerer, D., Guglielmetti, A., Menegazzo, R.: LUNA: nuclear astrophysics deep underground. Annu. Rev. Nucl. Part. Sci. 60, 53–73 (2010). https://doi.org/10.1146/annurev.nucl.012809.104526

    Article  ADS  Google Scholar 

  3. Rolfs, C., Rodney, W.S.: Cauldrons in the Cosmos. University of Chicago Press, Chicago (1988)

    Google Scholar 

  4. Adelberger, E.G., et al.: Solar fusion cross sections II: the pp chain and CNO cycles. Rev. Mod. Phys. 83, 195–245 (2010). https://doi.org/10.1103/RevModPhys.83.195

    Article  ADS  Google Scholar 

  5. Iliadis, C.: Nuclear Physics in Stars. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  6. Lane, A.M., Thomas, R.G.: R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  7. Tumino, A., et al.: New advances in Trojan Horse Method as an indirect approach to nuclear astrophysics. Few-Body Sys. 54, 745–753 (2013)

    Article  ADS  Google Scholar 

  8. Bettini, A.: The world deep underground laboratories. Eur. Phys. J. Plus 127, 114 (2012)

    Google Scholar 

  9. Best, A., et al.: Low energy neutron background in deep underground laboratories. Nucl. Instr. Meth. A 812, 1–6 (2016). https://doi.org/10.1016/j.nima.2015.12.034

    Article  ADS  Google Scholar 

  10. Best, A., et al.: Underground nuclear astrophysics. Eur. Phys. J. A 52, 72–75 (2016)

    Google Scholar 

  11. Aliotta, M., et al.: Helium burning and neutron sources in the stars. Eur. Phys. J. A 52, 76 (2016)

    Article  ADS  Google Scholar 

  12. Strieder, F., et al.: Bulletin of the American Physical Society - 2015 Fall Meeting of the APS Division of Nuclear Physics, vol. 60 (2015)

    Google Scholar 

  13. Yu-Cheng, Wu, et al.: Measurement of cosmic-ray flux in the China JinPing underground laboratory. Chin. Phys. C 37, 086001 (2013). https://doi.org/10.1088/1674-1137/37/8/086001

    Article  ADS  Google Scholar 

  14. Heusser, G.: Low-radioactivity background techniques. Ann. Rev. Nucl. Part. Sci. 45, 543–590 (1995). https://doi.org/10.1146/annurev.ns.45.120195.002551

    Article  ADS  Google Scholar 

  15. Anders, M., Trezzi, D., Bellini, A., et al.: Neutron-induced background by an \(\alpha \)-beam incident on a deuterium gas target and its implications for the study of the \(^2\)H(\(\alpha \),\(\gamma \))\(^6\)Li reaction at LUNA. Eur. Phys. J. A 49, 28 (2013)

    Article  ADS  Google Scholar 

  16. Arpesella, C., et al.: Measurement of the \(^3\)H(\(^3\)H,2p)\(^4\)He cross section within the solar Gamow peak. Phys. Lett. B 389, 452–456 (1996)

    Article  ADS  Google Scholar 

  17. Formicola, A., et al.: The nuclear physics of the hydrogen burning in the sun. Eur. Phys. J. A 52, 73 (2016)

    Article  ADS  Google Scholar 

  18. Bemmerer, D., et al.: Activation measurement of the \(^3\)He(\(\alpha \),\(\gamma \))\(^7\)Be cross section at low energy. Phys. Rev. Lett. 97, 122502 (2006). https://doi.org/10.1103/PhysRevLett.97.122502

  19. Gyurky, G., et al.: \(^3\)He(\(\alpha \),\(\gamma \))\(^7\)Be cross section at low energies. Phys. Rev. C. 75, 035805 (2007). https://doi.org/10.1103/PhysRevC.75.035805

    Article  ADS  Google Scholar 

  20. Confortola, F., et al.: Astrophysical S factor of the \(^3\)He(\(\alpha \),\(\gamma \))\(^7\)Be reaction measured at low energy via detection of prompt and delayed \(\gamma \) rays. Phys. Rev. C 75, 065803 (2007). https://doi.org/10.1103/PhysRevC.75.065803

  21. Formicola, A., et al.: The LUNA II 400 kV accelerator. Nucl. Instr. Meth. A 507, 609–615 (2003). https://doi.org/10.1016/S0168-9002(03)01435-9

    Article  ADS  Google Scholar 

  22. deBoer, R.J., et al.: Monte Carlo uncertainty of the \(^3\)He(\(\alpha \),\(\gamma \))\(^7\)Li reaction rate. Phys. Rev. C 90, 035804 (2014). https://doi.org/10.1103/PhysRevC.90.035804

    Article  ADS  Google Scholar 

  23. Di Leva, A., et al.: Stellar and Primordial Nucleosynthesis of the \(^7\)Be: Measurement of \(^3\)He(\(\alpha \),\(\gamma \))\(^7\)Li. Phys. Rev. Lett. 102(23), 232502 (2009). https://doi.org/10.1103/PhysRevLett.102.232502

  24. Formicola, A., et al.: Astrophysical S-factor of \(^{14}\)N(p,\(\gamma \))\(^{15}\)O. Phys. Lett. B 591, 61–68 (2004). https://doi.org/10.1016/j.physletb.2004.03.092

    Article  ADS  Google Scholar 

  25. Imbriani, G., et al.: S-factor of \(^{14}\)N(p,\(\gamma \))\(^{15}\)O at astrophysical energies. Eur. Phys. J. A 25, 455–466 (2005). https://doi.org/10.1140/epja/i2005-10138-7

    Article  ADS  Google Scholar 

  26. Lemut, A., et al.: First measurement of the \(^{14}\)N(p,\(\gamma \))\(^{15}\)O cross section down to 70 keV. Phys. Lett. B 634, 483–487 (2006). https://doi.org/10.1016/j.physletb.2006.02.021

    Article  ADS  Google Scholar 

  27. Marta, M., et al.: Precision study of ground state capture in the \(^{14}\)N(p,\(\gamma \))\(^{15}\)O reaction. Phys. Rev. C 78, 022802(R) (2008). https://doi.org/10.1103/PhysRevC.78.022802

    Article  ADS  Google Scholar 

  28. Mukhamedzhanov, A.M., et al.: Asymptotic normalization coefficients for \(^{14}\)N+p\(\rightarrow \)\(^{15}\)O and the astrophysical S factor for \(^{14}\)N(p,\(\gamma \))\(^{15}\)O. Phys. Rev. C 67, 065804 (2003). https://doi.org/10.1103/PhysRevC.67.065804

  29. Runkle, R.C., et al.: Direct measurement of the \(^{14}\)N(p,\(\gamma \))\(^{15}\)O S factor. Phys. Rev. Lett. 94, 082503 (2005). https://doi.org/10.1103/PhysRevLett.94.082503

  30. Schröder, U., et al.: Stellar reaction rate of \(^{14}\)N(p,\(\gamma \))\(^{15}\)O and hydrogen burning in massive stars*. Nucl. Phys. A 467, 240–260 (1987)

    Article  ADS  Google Scholar 

  31. Serenelli, A., et al.: Using the standard solar model to constrain composition and S-factors. arXiv:1211.6740

  32. Bertone, P.F., et al.: Lifetime of the 6793-keV State in \(^{15}\)O. Phys. Rev. Lett 87, 152501 (2001). https://doi.org/10.1103/PhysRevLett.87.152501

  33. Angulo, C., Descouvemont, P.: The \(^{14}\)N(p,\(\gamma \))\(^{15}\)O low-energy S-factor. Nucl. Phys. A 690, 755–768 (2001)

    Article  ADS  Google Scholar 

  34. Li, Q., et al.: Cross section measurement of \(^{14}\)N(p,\(\gamma \))\(^{15}\)O in the CNO cycle. Phys. Rev. C 93, 055806 (2016). https://doi.org/10.1103/PhysRevC.93.055806

    Article  ADS  Google Scholar 

  35. Wagner, L., et al.: Astrophysical S factor of the \(^{14}\)N(p,\(\gamma \))\(^{15}\)O reaction at 0.41.3 MeV. Phys. Rev. C 97, 015801 (2017). https://doi.org/10.1103/PhysRevC.97.015801

  36. Yamada, K., et al.: E1 strength of the subthreshold 3/2+ state in \(^{15}\)O studied by Coulomb excitation. Phys. Lett. B 579, 265–270 (2004). https://doi.org/10.1016/j.physletb.2003.11.024

    Article  ADS  Google Scholar 

  37. Schrmann, D., et al.: Lifetime measurement of the 6792 keV state in\(^{15}\)O, important for the astrophysical S factor extrapolation in \(^{14}\)N(p,\(\gamma \))\(^{15}\)O. Phys. Rev. C 77, 055803 (2008). https://doi.org/10.1103/PhysRevC.77.055803

    Article  ADS  Google Scholar 

  38. Nelson, S.O., et al.: Analyzing power measurement for the \(^{14}\)N(\(\overrightarrow{p}\),\(\gamma \))\(^{15}\)O reaction at astrophysically relevant energies. Phys. Rev. C 68, 065804 (2003). https://doi.org/10.1103/PhysRevC.68.065804

    Article  ADS  Google Scholar 

  39. Bemmerer, D., et al.: Low energy measurement of the \(^{14}\)N(p,\(\gamma \))\(^{15}\)O total cross section at the LUNA underground facility. Nucl. Phys. A 779, 297–317 (2006). https://doi.org/10.1016/j.nuclphysa.2006.09.001

    Article  Google Scholar 

  40. Sen, A., et al.: High intensity, high stability 3.5 MV Singletron accelerator. Nucl. Instr. Meth. B (in press). https://doi.org/10.1016/j.nimb.2018.09.016

    Article  Google Scholar 

Download references

Acknowledgements

The experimental work described in this paper has been mainly developed in the framework of the LUNA experiments. The authors would thank all the members of this international collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Formicola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Formicola, A., Ciani, G.F., Csedreki, L., Di Paolo, L., Junker, M. (2020). Few-Nucleon Reactions in Underground Laboratory. In: Orr, N., Ploszajczak, M., Marqués, F., Carbonell, J. (eds) Recent Progress in Few-Body Physics. FB22 2018. Springer Proceedings in Physics, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-32357-8_64

Download citation

Publish with us

Policies and ethics