Skip to main content

Potential Splitting Approach for Atomic and Molecular Systems

  • Conference paper
  • First Online:
Recent Progress in Few-Body Physics (FB22 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 238))

Included in the following conference series:

  • 997 Accesses

Abstract

In order to describe few-body scattering in the case of the Coulomb interaction, an approach based on splitting the reaction potential into a finite range part and a long range tail part is presented. The resulting driven Schrödinger equation with asymptotic outgoing waves is solved with the exterior complex scaling. The approach is illustrated with calculations of the electron scattering on the hydrogen atom and the positive helium ion. The scattering processes in the H\({}^+\) – H\({}^+_2\) system with one-state electronic energy surface have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faddeev, L.D., Merkuriev, S.P.: Quantum Scattering Theory for Several Particle Systems. Kluwer, Dordrecht (1993)

    Book  Google Scholar 

  2. Bray, I., et al.: Phys. Rep. 520, 135 (2012)

    Article  ADS  Google Scholar 

  3. Volkov, M.V., et al.: Phys. Rev. A 83, 032722 (2011)

    Article  ADS  Google Scholar 

  4. Volkov, M.V., et al.: EPL 110, 30006 (2015)

    Article  ADS  Google Scholar 

  5. Yarevsky, E., et al.: J. Phys. B: At. Mol. Opt. Phys. 48, 115002 (2015)

    Article  ADS  Google Scholar 

  6. Yarevsky, E., et al.: J. Phys. B: At. Mol. Opt. Phys. 50, 055001 (2017)

    Article  ADS  Google Scholar 

  7. Rescigno, T.N., et al.: Phys. Rev. A 55, 4253 (1997)

    Article  ADS  Google Scholar 

  8. Bartlett, P.L.: J. Phys. B: At. Mol. Opt. Phys. 39, R379 (2006)

    Article  ADS  Google Scholar 

  9. Elander, N., et al.: Phys. Rev. A 67, 062508 (2003)

    Article  ADS  Google Scholar 

  10. Wang, Y.D., Callaway, J.: Phys. Rev. A 48, 2058 (1993)

    Article  ADS  Google Scholar 

  11. Dunning Jr., T.H.: J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  12. Werner, H.-J. et al.: MOLPRO, version 2010.1, a package of ab initio programs (2010). http://www.molpro.net

Download references

Acknowledgements

This work is supported by RFBR grant No. 18-02-00492. ÅL acknowledges support from the Swedish Research Council under project number 2014–4164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Yarevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarevsky, E., Yakovlev, S.L., Elander, N., Larson, Å. (2020). Potential Splitting Approach for Atomic and Molecular Systems. In: Orr, N., Ploszajczak, M., Marqués, F., Carbonell, J. (eds) Recent Progress in Few-Body Physics. FB22 2018. Springer Proceedings in Physics, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-32357-8_12

Download citation

Publish with us

Policies and ethics