Skip to main content

Mesoscopic Bose-Einstein Condensate in Anharmonic Trap: Concept of Transition Exponent

  • Conference paper
  • First Online:
Recent Progress in Few-Body Physics (FB22 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 238))

Included in the following conference series:

  • 994 Accesses

Abstract

We utilize a two-body correlated basis function and van der Waals interaction to describe interacting bosons in the anharmonic trap. We analyze the behaviour of specific heat capacity near the transition temperature in mesoscopic region. We calculate the transition exponent to define the quasi phase transition for different anharmonicity. Comparison with pure harmonic trap is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeomans, J.M.: Statistical mechanics of phase transitions. Clarendon Press, Oxford (1992)

    Google Scholar 

  2. Huang, K.: Statistical mechanics, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  3. Dalfovo, F., et al.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  4. Kocharovsky, V.V., Kocharovsky, V.V.: Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas. Phys. Rev. A 81, 033615 (2010)

    Article  ADS  Google Scholar 

  5. Tarasov, S.V., et al.: Universal scaling in the statistics and thermodynamics of a Bose-Einstein condensation of an ideal gas in an arbitrary trap. Phys. Rev. A 90, 033605 (2014)

    Article  ADS  Google Scholar 

  6. Berrada, T., et al.: Integrated Mach-Zehner interferometer for Bose-Einstein condensates. Nat. Commun. 4, 2077 (2013)

    Article  ADS  Google Scholar 

  7. Landsberg, P.T.: Thermodynamics—with quantum statistical illustrations. Interscience, New York (1961)

    Book  Google Scholar 

  8. Mullin, W.J., Fernandez, J.P.: Bose-Einstein condensation, fluctuations, and recurrence relations in statistical mechanics. Am. J. Phys. 71, 661 (2003)

    Article  ADS  Google Scholar 

  9. Das, T.K., Chakrabarti, B.: Potential harmonics expansion method for trapped interacting bosons: inclusion of two-body correlation. Phys. Rev. A 70, 063601 (2004)

    Google Scholar 

  10. Das, T.K., et al.: Behavior of a Bose-Einstein condensate containing a large number of atoms interacting through a finite-range interatomic interaction. Phys. Rev. A 78, 042705 (2007)

    Article  ADS  Google Scholar 

  11. Bhattacharyya, S., et al.: Effects of interaction on thermodynamics of a repulsive Bose-Einstein condensate. Phys. Rev. A 88, 053614 (2013)

    Article  ADS  Google Scholar 

  12. Bhattacharyya, S., et al.: Energy fluctuation of a finite number of interacting bosons: a correlated many-body approach. Phys. Rev. A 93, 033624 (2016). Biswas, A.: Effect of realistic interatomic interactions and two-body correlation on the heat capacity of a trapped BEC. J. Phys. B 42, 215302 (2009); Goswami, S., Das, T.K., Biswas, A.: Thermodynamic properties of ultracold Bose gas: transition exponents and universality. J. Low Temp. Phys. 172, 184 (2013)

    Google Scholar 

  13. Das, T.K., et al.: \(^{85}\)Rb Bose-Einstein condensate with tunable interaction: a quantum many body approach. Phys. Lett. A 373, 258 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Sangita Bera wants to acknowledge DST for giving financial support through INSPIRE fellowship to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lekala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lekala, M.L., Bera, S., Rampho, G.J., Chakrabarti, B., Bhattacharyya, S. (2020). Mesoscopic Bose-Einstein Condensate in Anharmonic Trap: Concept of Transition Exponent. In: Orr, N., Ploszajczak, M., Marqués, F., Carbonell, J. (eds) Recent Progress in Few-Body Physics. FB22 2018. Springer Proceedings in Physics, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-32357-8_10

Download citation

Publish with us

Policies and ethics