Skip to main content

Dyadic Harmonic Analysis and Weighted Inequalities: The Sparse Revolution

  • Chapter
  • First Online:
New Trends in Applied Harmonic Analysis, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We will introduce the basics of dyadic harmonic analysis and how it can be used to obtain weighted estimates for classical Calderón–Zygmund singular integral operators and their commutators. Harmonic analysts have used dyadic models for many years as a first step toward the understanding of more complex continuous operators. In 2000, Stefanie Petermichl discovered a representation formula for the venerable Hilbert transform as an average (over grids) of dyadic shift operators, allowing her to reduce arguments to finding estimates for these simpler dyadic models. For the next decade, the technique used to get sharp weighted inequalities was the Bellman function method introduced by Nazarov, Treil, and Volberg, paired with sharp extrapolation by Dragičević et al. Other methods where introduced by Hytönen, Lerner, Cruz-Uribe, Martell, Pérez, Lacey, Reguera, Sawyer, and Uriarte-Tuero, involving stopping time and median oscillation arguments, precursors of the very successful domination by positive sparse operators methodology. The culmination of this work was Tuomas Hytönen’s 2012 proof of the \(A_2\) conjecture based on a representation formula for any Calderón–Zygmund operator as an average of appropriate dyadic operators. Since then domination by sparse dyadic operators has taken central stage and has found applications well beyond Hytönen’s \(A_p\) theorem. We will survey this remarkable progression and more in these lecture notes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://terrytao.wordpress.com/2007/07/27/dyadic-models/.

  2. 2.

    The Salem Prize, founded by the widow of Raphael Salem, is awarded every year to a young mathematician judged to have done outstanding work in Salem’s field of interest, primarily the theory of Fourier series. The prize is considered highly prestigious and many Fields Medalists previously received Salem prize (Wikipedia).

  3. 3.

    Namely, for \(g\in L^1(\mu )\) it holds that \(\mu \{x\in \mathbb R: |g(x)|>\lambda \}|\le \frac{1}{\lambda }\Vert g\Vert _{L^1(\mu )}\) for all \(\lambda >0\), in other words if \(g\in L^1(\mu )\) then \(g\in L^{1,\infty }(\mu )\), where \(g\in L^{p,\infty }(\mu )\) means \(\Vert g\Vert _{L^{p,\infty }(\mu )} := \sup _{\lambda>0} \lambda \mu ^{1/p}\{x\in \mathbb R^d: |g(x)| >\lambda \}<\infty \).

  4. 4.

    http://www-sop.inria.fr/apics/ahpi/summerschool11/bellman_lectures_volberg-1.pdf.

  5. 5.

    See page 8 in José García-Cuerva’s eulogy for José Luis Rubio de Francia (1949–1988) [75].

  6. 6.

    Nowadays called “Sawyer’s testing conditions”.

  7. 7.

    An orthonormal wavelet basis of \(L^2(\mathbb R)\) is an orthonormal basis where all its elements are translations and dilations of a fixed function \(\psi \), called the wavelet. More precisely, a function \(\psi \in L^2(\mathbb R)\) is a wavelet if and only if the functions \(\psi _{j,k}(x)=2^{j/2}\psi (2^jx-k)\) for \(j,k\in \mathbb {Z}\) form an orthonormal basis of \(L^2(\mathbb R)\).

  8. 8.

    Recipient of the 2017 Abel Prize.

  9. 9.

    A measurable set E of finite measure is Borel regular if there is a Borel set B such that \(E\subset B\) and \(\mu (E)=\mu (B)\).

  10. 10.

    The topology induced by a quasi-metric is the largest topology \(\mathcal {T}\) such that for each \(x\in X\) the quasi-metric balls centered at x form a fundamental system of neighborhoods of x. Equivalently, a set \(\varOmega \) is open, \(\varOmega \in \mathcal {T}\), if for each \(x\in \varOmega \) there exists \(r>0\) such that the quasi-metric ball \(B(x,r)\subset \varOmega \). A set in X is closed if it is the complement of an open set.

  11. 11.

    Recall that any bounded linear operator on \(L^2(\mathbb R)\) that commutes with dilations and translations and anticommutes with reflexions must be a constant multiple of the Hilbert transform.

  12. 12.

    Carlos Kenig, an Argentinian mathematician, was elected President of the International Mathematical Union in July 2018 in the International Congress of Mathematicians (ICM) held in Brazil and for the first time in the Southern hemisphere.

  13. 13.

    Jill Pipher is the president-elect of the American Mathematical Society (AMS), and will begin a 2-year term in 2019.

  14. 14.

    As I am writing these notes, it has been announced that Coifman won the 2018 Schock Prize in Mathematics for his “fundamental contributions to pure and applied harmonic analysis.”

References

  1. H. Aimar, Construction of Haar type bases on quasi-metric spaces with finite Assouad dimension. Anal. Acad. Nac. Cs. Ex., F. y Nat., Buenos Aires 54 (2002)

    Google Scholar 

  2. H. Aimar, A. Bernardis, B. Iaffei, Multiresolution approximations and unconditional bases on weighted Lebesgue spaces on spaces of homogeneous type. J. Approx. Theory 148(1), 12–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Aimar, A. Bernardis, L. Nowak, Dyadic Fefferman-Stein inequalities and the equivalence of Haar bases on weighted Lebesgue spaces. Proc. R. Soc. Edinburgh Sect. A 141(1), 1–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Aimar, A. Bernardis, L. Nowak, Equivalence of Haar bases associated with different dyadic systems. J. Geom. Anal. 21(2), 288–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Aimar, O. Gorosito, Unconditional Haar bases for Lebesgue spaces on spaces of homogeneous type, in Proceedings of the SPIEE, Wavelet Applications in Signal and Image Processing VIII, vol. 4119 (2000), pp. 556–563

    Google Scholar 

  6. H. Aimar, R.A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type. Proc. Am. Math. Soc. 91(2), 213–216 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Alvarado, M. Mitrea, Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces. A Sharp Theory. Springer Lecture Notes in Mathematics, vol. 2142 (2015)

    Google Scholar 

  8. J. Álvarez, R.J. Bagby, D.S. Kurtz, C. Pérez, Weighted estimates for commutators of linear operators. Studia Math. 104(2), 195–209 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Astala, T. Iwaniec, E. Saksman, Beltrami operators in the plane. Duke Math. J. 107(1), 27–56 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Auscher, T. Hytönen, Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal. 34(2), 266–296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Auscher, T. Hytönen, Addendum to Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal. 39(3), 568–569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Barron, J. Conde-Alonso, Y. Ou, G. Rey, Sparse domination and the strong maximal function. arXiv:1811.01243

  13. D. Beltran, L. Cladek, Sparse bounds for pseudodifferential operators. J. Anal. Math. arXiv:1711.02339

  14. C. Benea, F. Bernicot, T. Luque, Sparse bilinear forms for Bochner Riesz multipliers and applications. arXiv:1605.06401

  15. C. Benea, C. Muscalu, Multiple vector-valued inequalities via the helicoidal method. Anal. PDE 9(8), 1931–1988 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Benea, C. Muscalu, Sparse domination via the helicoidal method. arXiv:1707.05484

  17. A. Bényi, D. Maldonado, V. Naibo, What is... a Paraproduct?. Not. Am. Math. Soc. 57(7), 858–860 (2010)

    Google Scholar 

  18. A. Bényi, J.M. Martell, K. Moen, E. Stachura, R. Torres, Boundedness results for commutators with BMO functions via weighted estimates: a comprehensive approach. arXiv:1710.08515

  19. F. Bernicot, D. Frey, S. Petermichl, Sharp weighted norm estimates beyond Calderón-Zygmund theory. Anal. PDE 9, 1079–1113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Beznosova, Bellman functions, paraproducts, Haar multipliers, and weighted inequalities. Ph.D. Dissertation, University of New Mexico, 2008

    Google Scholar 

  21. O. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space \(L^2(w)\). J. Func. Anal. 255, 994–1007 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. O. Beznosova, D. Chung, J. Moraes, M. C. Pereyra, On two weight estimates for dyadic operators, in Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory, vol. 2, Association for Women in Mathematics Series, vol. 5. (Springer, Cham, 2017), pp. 135–169

    Google Scholar 

  23. O. Beznosova, A. Reznikov, Equivalent definitions of dyadic Muckenhoupt and Reverse Holder classes in terms of Carleson sequences, weak classes, and comparability of dyadic \(L\log L\) and \(A_\infty \) constants. Rev. Mat. Iberoam. 30(4), 1190–1191 (2014)

    Google Scholar 

  24. K. Bickel, A. Culiuc, S. Treil, B. Wick, Two weight estimates for well localized operators with matrix weights. Trans. Am. Math. Soc. 371, 6213–6240 (2019)

    Google Scholar 

  25. S. Bloom, A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 292(1), 103–122 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. S.M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340(1), 253–272 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. S.M. Buckley, Summation condition on weights. Mich. Math. J. 40, 153–170 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. D.L. Burkholder, Martingale transforms. Ann. Math. Stat. 37(6), 1494–1504 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. D.L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12, 647–702 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.-Y.A. Chang, J.M. Wilson, T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv. 60(2), 217–246 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Chen, J. Li, L.A. Ward, BMO from dyadic BMO via expectations on product spaces of homogeneous type. J. Func. Anal. 265(10), 2420–2451 (2013)

    Google Scholar 

  33. M. Christ, A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61(2), 601–628 (1990)

    Google Scholar 

  34. D. Chung, Commutators and dyadic paraproducts on weighted Lebesgue spaces. Ph.D. Dissertation, University of New Mexico, 2010

    Google Scholar 

  35. D. Chung, Sharp estimates for the commutators of the Hilbert, Riesz and Beurling transforms on weighted Lebesgue spaces. Indiana U. Math. J. 60(5), 1543–1588 (2011)

    Article  MATH  Google Scholar 

  36. D. Chung, Weighted inequalities for multivariable dyadic paraproducts. Publ. Mat. 55(2), 475–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Chung, M.C. Pereyra, C. Pérez, Sharp bounds for general commutators on weighted Lebesgue spaces. Trans. Am. Math. Soc. 364, 1163–1177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Cladek, Y. Ou, Sparse domination of Hilbert transforms along curves. Math. Res. Lett. 25(2), 415–436 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. R.R. Coifman, Y. Meyer, Au délà des opérateurs pseudo-différentiels. Astérisque 57 (1979)

    Google Scholar 

  41. R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. R.R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. Lecture Notes in Mathematics, vol. 242 (Springer, Berlin, 1971)

    Google Scholar 

  43. J.M. Conde, A note on dyadic coverings and nondoubling Calderón-Zygmund theory. J. Math. Anal. Appl. 397(2), 785–790 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. J.M. Conde-Alonso, A. Culiuc, F. Di Plinio, Y. Ou, A sparse domination principle for rough singular integrals. Anal. PDE 10(5), 1255–1284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. J.M. Conde-Alonso, L.D. López-Sánchez, Operator-valued dyadic harmonic analysis beyond doubling measures. Proc. Am. Math. Soc. 144(9), 3869–3885 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. M. Conde-Alonso, J. Parcet, Nondoubling Calderón-Zygmund theory -a dyadic approach-. J. Fourier Anal. Appl. arXiv:1604.03711

  47. J.M. Conde-Alonso, G. Rey, A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365(3–4), 1111–1135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Cotlar, C. Sadosky, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, in Harmonic Analysis in Euclidean spaces, ed. by G.Weiss, S. Wainger, Proceedings of Symposia in Pure Mathematics, vol. 35 (Providence, R.I. 1979), 383–407. American Mathematical Society

    Google Scholar 

  49. M. Cotlar, C. Sadosky, On some \(L^p\) versions of the Helson-Szegö theorem, in Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. I, II (Chicago, Ill., 1981), 306–317. Wadsworth Mathematics Series, Wadsworth, Belmont, CA (1983)

    Google Scholar 

  50. D. Cruz-Uribe, Two weight norm inequalities for fractional integral operators and commutators. Advanced Courses of Mathematical Analysis V I, 25–85 (2017)

    Article  MATH  Google Scholar 

  51. D. Cruz-Uribe, K. Moen, Sharp norm inequalities for commutators of classical operators. Publ. Mat. 56, 147–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Cruz-Uribe, J.M. Martell, C. Peréz, Weights, Extrapolation and the Theory of Rubio the Francia (Birkhäuser, 2011)

    Google Scholar 

  53. D. Cruz-Uribe, J.M. Martell, C. Pérez, Sharp weighted estimates for classical operators. Adv. Math. 229, 408–441 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Culiuc, F. Di Plinio, M.T. Lacey, Y. Ou, Endpoint sparse bound for Walsh-Fourier multipliers of Marcinkiewicz type. Rev. Mat. Iberoam. arXiv:1805.06060

  55. A. Culiuc, F. Di Plinio, Y. Ou, Uniform sparse domination of singular integrals via dyadic shifts. Math. Res. Lett. 25(1), 21–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Culiuc, F. Di Plinio, Y. Ou, Domination of multilinear singular integrals by positive sparse forms. J. Lond. Math. Soc. 98(2), 369–392 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Culiuc, R. Kesler, M.T. Lacey, Sparse Bounds for the discrete cubic Hilbert transform. Anal. PDE. arXiv:1612:08881

  58. A. Culiuc, S. Petermichl, S. Pott, A matrix weighted bilinear Carleson lemma and maximal function. arXiv:1811.05838

  59. A. Culiuc, S. Treil, The Carleson Embedding Theorem with matrix weights. Int. Math. Res. Not. https://doi.org/10.1093/imrn/rnx222, arXiv:1508.01716

  60. G. David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface. Rev. Mat. Iberoam. 4(1), 73–114 (1988)

    Article  MATH  Google Scholar 

  61. G. David, S. Semmes, A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math. 20, 371–397 (1984)

    Article  MATH  Google Scholar 

  62. G. David, J.-L. Journé, S. Semmes, Opérateurs de Calderón-Zygmund, fonctions paraaccrétives et interpolation. Rev. Mat. Iberoam. 1(4), 1–56 (1985)

    Article  MATH  Google Scholar 

  63. F.C. de França Silva, P. Zorin-Kranich, Sparse domination of sharp variational truncations. arXiv:1604.05506

  64. F. Di Plinio, Y. Do, G. Uraltsev, Positive sparse domination of variational Carleson operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(4), 1443–1458 (2018)

    Google Scholar 

  65. F. Di Plinio, T. Hytönen, K. Li, Sparse bounds for maximal rough singular integrals via the Fourier transform. Ann. Inst. Fourier. (Grenoble). arXiv:1706.07111

  66. D.G. Deng, Y. Han, Harmonic analysis on spaces of homogeneous type (Springer, 2009)

    Google Scholar 

  67. O. Dragičević, L. Grafakos, M.C. Pereyra, S. Petermichl, Extrapolation and sharp norm estimates for classical operators in weighted Lebesgue spaces. Publ. Mat. 49, 73–91 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  68. J. Duoandicoetxea, Fourier Analysis. Graduate Studies in Mathematics, vol. 29, American Mathematical Society (Providence, RI, 2001)

    Google Scholar 

  69. J. Duoandicoetxea, Extrapolation of weights revisited: new proofs and sharp bounds. J. Func. Anal. 260(6, 15), 1886–1901 (2011)

    Google Scholar 

  70. X.T. Duong, R. Gong, M.-J.S. Kuffner, J. Li, B. Wick, D. Yang, Two weight commutators on spaces of homogeneous type and applications. arXiv:1809.07942

  71. S. Fackler, T. Hytönen, Off-diagonal sharp two-weight estimates for sparse operators. N. Y. J. Math. 24, 21–42 (2018)

    MathSciNet  MATH  Google Scholar 

  72. R. Fefferman, C. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations. Ann. Math. (2) 134(1), 65–124 (1991)

    Google Scholar 

  73. C. Fefferman, E. Stein, \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  74. T. Fiegel, Singular Integral Operators: A Martingale Approach, in: Geometry of Banach Spaces. London Mathematical Society. Lecture Notes Series, vol. 158 (Cambridge University Press, 1990), pp. 95–110

    Google Scholar 

  75. J. García-Cuerva, José Luis Rubio de Francia (1949–1988). Collect. Math. 38, 3–15 (1987)

    MathSciNet  MATH  Google Scholar 

  76. J. García-Cuerva, J.L. Rubio de Francia, Weighted norm inequalities and related topics. North-Holland Mathematics Studies, vol. 116 (Amsterdam, 1981)

    Google Scholar 

  77. R. Garg, L. Roncal, S. Shrivastava, Quantitative weighted estimates for Rubio de Francia’s Littlewood–Paley square function. arxiv:1809.02937

  78. J. Garnett, P.W. Jones, BMO from dyadic BMO. Pac. J. Math. 99(2), 351–371 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  79. M. Girardi, W. Sweldens, A new class of unbalanced Haar wavelets that form an unconditional basis for \(L^p\) on general measure spaces. J. Fourier Anal. Appl. 3(4), 45–474 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  80. L. Grafakos, Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. (Springer, New York, 2014)

    Google Scholar 

  81. L. Grafakos, Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 3rd edn. (Springer, New York, 2014)

    Google Scholar 

  82. T.S. Hänninen, Equivalence of sparse and Carleson coefficients for general sets, arXiv:1709.10457

  83. T.S. Hänninen, E. Lorist, Sparse domination for the lattice Hardy-Littlewood maximal operator. arXiv:1712.02592

  84. I. Holmes, M.T. Lacey, B. Wick, Commutators in the two-weight setting. Math. Ann. 367, 5–80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  85. I. Holmes, M.T. Lacey, B. Wick, Bloom’s inequality: commutators in a two-weight setting. Arch. Math. (Basel) 106(1), 53–63 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  86. I. Holmes, S. Petermichl, B. Wick, Weighted little bmo and two-weight inequalities for Journé commutators. Anal. PDE 11(7), 1693–1740 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  87. S. Hukovic, S. Treil, A. Volberg, The Bellman function and sharp weighted inequalities for square functions, in Complex Analysis, Operators and Related Topics. Operator Theory: Advances and Applications, vol. 113, (Birkaüser Basel, 2000), pp. 97–113

    Google Scholar 

  88. R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and the Hilbert transform. Trans. Am. Math. Soc. 176, 227–252 (1973)

    Google Scholar 

  89. T. Hytönen, On Petermichl’s dyadic shift and the Hilbert transform. C. R. Math. 346, 1133–1136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  90. T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)

    Google Scholar 

  91. T. Hytönen, Martingales and harmonic analysis (2013). http://www.ctr.maths.lu.se/media/MATP29/2016vt2016/maha-eng_-1.pdf

  92. T. Hytönen, The two-weight inequality for the Hilbert transform with general measures. Proc. Lond. Math. Soc. 117(3), 483–526 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  93. T. Hytönen, The Holmes-Wick theorem on two-weight bounds for higher order commutators revisited. Archiv der Mathematik 107(4), 389–395 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  94. T. Hytönen, A. Kairema, Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126(1), 1–33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  95. T. Hytönen, M.T. Lacey, The \(A_p\)-\(A_{\infty }\) inequality for general Calderón-Zygmund operators. Indiana Univ. Math. J. 61, 2041–2052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  96. T. Hytönen, K. Li, Weak and strong \(A_p\)-\(A_{\infty }\) estimates for square functions and related operators. Proc. Am. Math. Soc. 146(6), 2497–2507 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  97. T. Hytönen, H. Martikainen, Non-homogeneous \(Tb\) theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal. 22(4), 1071–1107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  98. T. Hytönen, C. Pérez, Sharp weighted bounds involving \(A_{\infty }\). Anal. PDE 6(4), 777–818 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  99. T. Hytönen, S. Petermichl, A. Volberg, The sharp square function estimate with matrix weight. arXiv:1702.04569

  100. T. Hytönen, L. Roncal, O. Tapiola, Quantitative weighted estimates for rough homogeneous singular integrals. Israel J. Math. 218(1), 133–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  101. T. Hytönen, O. Tapiola, Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes. J. Approx. Theory 185, 12–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  102. G.H. Ibañez-Firnkorn, M.S. Riveros, R.E. Vidal, Sharp bounds for fractional operator with \(L^{\alpha ,r^{\prime }}\)-Hörmander conditions. arXiv:1804.09631

  103. J. Isralowitz, H.K. Kwon, S. Pott, Matrix weighted norm inequalities for commutators and paraproducts with matrix symbols. J. Lond. Math. Soc. (2) 96(1), 243–270 (2017)

    Google Scholar 

  104. F. John, L. Nirenberg, On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  105. A. Kairema, J. Li, M.C. Pereyra, L.A. Ward, Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type. J. Func. Anal. 271(7), 1793–1843 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  106. G.A. Karagulyan, M.T. Lacey, On logarithmic bounds of maximal sparse operators. arXiv:1802.00954

  107. N.H. Katz, M.C. Pereyra, On the two weight problem for the Hilbert transform. Rev. Mat. Iberoam. 13(01), 211–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  108. R. Kesler, M.T. Lacey, Sparse endpoint estimates for Bohner-Riesz multipliers on the plane. Collec. Math. 69(3), 427–435 (2018)

    Article  MATH  Google Scholar 

  109. R. Kesler, D. Mena, Uniform sparse bounds for discrete quadratic phase Hilbert transform. Anal. Math. Phys. (2017). https://doi.org/10.1007/s13324-017-0195-3

  110. B. Krause, M.T. Lacey, Sparse bounds for maximal monomial oscillatory Hilbert transforms. Studia Math. 242(3), 217–229 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  111. B. Krause, M.T. Lacey, Sparse bounds for random discrete Carleson theorems, in 50 Years with Hardy Spaces. Operator Theory: Advances and Applications, vol. 261 (Birkhäuser/Springer, Cham, 2018), pp. 317–332

    Google Scholar 

  112. B. Krause, M.T. Lacey, Sparse bounds for maximally truncated oscillatory singular integrals. Ann. Sci. Scuola Norm. Sup. 20 (2018). https://doi.org/10.2422/2036-2145.201706_023

  113. M.T. Lacey, Two weight Inequality for the Hilbert transform: a real variable characterization. II. Duke Math. J. 163(15), 2821–2840 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  114. M.T. Lacey, The two weight inequality for the Hilbert transform: a primer, in Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory. Association for Women in Mathematics Series 5, vol. 2 (Springer, Cham, 2017), pp. 11–84

    Google Scholar 

  115. M.T. Lacey, An elementary proof of the \(A_2\) bound. Israel J. Math. 217, 181–195 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  116. M.T. Lacey, Sparse bounds for spherical maximal functions. J. d’Analyse Math. arXiv:1702.08594

  117. M.T. Lacey, K. Li, Two weight norm inequalities for the \(g\) function. Math. Res. Lett. 21(03), 521–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  118. M.T. Lacey, K. Li, On \(A_p\)-\(A_{\infty }\) estimates for square functions. Math. Z. 284, 1211–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  119. M.T. Lacey, D. Mena, The sparse \(T1\) theorem. Houst. J. Math. 43(1), 111–127 (2017)

    MathSciNet  MATH  Google Scholar 

  120. M.T. Lacey, D. Mena, M.C. Reguera, Sparse bounds for Bochner-Riesz multipliers. J. Fourier Anal. Appl. (2017). https://doi.org/10.1007/s00041-017-9590-2

  121. M.T. Lacey, K. Moen, C. Pérez, R.H. Torres, Sharp weighted bounds for fractional integral operators. J. Funct. Anal. 259, 107–1097 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  122. M.T. Lacey, S. Petermichl, M.C. Reguera, Sharp \(A_2\) inequality for Haar shift operators. Math. Ann. 348, 127–141 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  123. M.T. Lacey, E. Sawyer, C.-Y. Shen, I. Uriarte-Tuero, The two weight inequality for the Hilbert transform, coronas and energy conditions. Duke Math. J. 163(15), 2795–2820 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  124. M.T. Lacey, S. Spencer, Sparse bounds for oscillatory and random singular integrals. N. Y. J. Math. 23, 119–131 (2017)

    MathSciNet  MATH  Google Scholar 

  125. M.T. Lacey, C. Thiele, \(L^p\) bounds for the bilinear Hilbert transform. Ann. Math. 146, 693–724 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  126. A.K. Lerner, An elementary approach to several results on the Hardy-Littlewood maximal operator. Proc. Am. Math. Soc. 136(8), 2829–2833 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  127. A.K. Lerner, Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv. Math. 226, 3912–3926 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  128. A.K. Lerner, Mixed \(A_p\)-\(A_r\) inequalities for classical singular integrals and Littlewood-Paley operators. J. Geom. Anal. 23, 1343–1354 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  129. A.K. Lerner, On an estimate of Calderón-Zygmund operators by dyadic positive operators. J. Anal. Math. 121, 141–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  130. A.K. Lerner, A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. 14, 3159–3170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  131. A.K. Lerner, On pointwise estimates involving sparse operators. N. Y. J. Math. 22, 341–349 (2016)

    MathSciNet  MATH  Google Scholar 

  132. A.K. Lerner, K. Moen, Mixed \(A_p\)-\(A_{\infty }\) estimates with one supremum. Studia Math. 219(3), 247–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  133. A.K. Lerner, F. Nazarov, Intuitive dyadic calculus: the basics. Expo. Math. arXiv:1508.05639

  134. A.K. Lerner, S. Ombrosi, I. Rivera-Ríos, On pointwise and weighted estimates for commutators of Calderón-Zygmund operators. Adv. Math. 319, 153–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  135. A.K. Lerner, S. Ombrosi, I. Rivera-Ríos, Commutators of singular integrals revisited. Bull. Lond. Math. Soc. (2018). https://doi.org/10.1112/blms.12216

  136. L.D. López-Sánchez, J.M. Martell, J. Parcet, Dyadic harmonic analysis beyond doubling measures. Adv. Math. 267, 44–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  137. R.A. Macías, C. Segovia, Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  138. T. Mei, BMO is the intersection of two translates of dyadic BMO. C. R. Math. Acad. Sci. Paris 336(12), 1003–1006 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  139. K. Moen, Sharp one-weight and two-weight bounds for maximal operators. Studia Math. 194(2), 163–180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  140. J.C. Moraes, M.C. Pereyra, Weighted estimates for dyadic Paraproducts and \(t\) -Haar multiplies with complexity \((m, n)\). Publ. Mat. 57, 265–294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  141. B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MATH  Google Scholar 

  142. P. F. X. Müller, Isomorphisms Between\(H^1\)Spaces. Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series), vol. 66 (Birkhäuser Verlag, Basel, 2005)

    Google Scholar 

  143. F. Nazarov, S. Petermichl, S. Treil, A. Volberg, Convex body domination and weighted estimates with matrix weights. Adv. Math. 318, 279–306 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  144. F. Nazarov, A. Reznikov, A. Volberg, The proof of \(A_2\) conjecture in a geometrically doubling metric space. Indiana Univ. Math. J. 62(5), 1503–1533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  145. F. Nazarov, S. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis. St. Petersburg Math. J. 8, 721–824 (1997)

    MathSciNet  Google Scholar 

  146. F. Nazarov, S. Treil, A. Volberg, The Bellman functions and the two-weight inequalities for Haar multipliers. J. Am. Math. Soc. 12, 909–928 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  147. F. Nazarov, S. Treil, A. Volberg, Bellman Function in Stochastic Optimal Control and Harmonic Analysis (How our Bellman Function got its name). Operator Theory: Advances and Applications, vol. 129 (2001), pp. 393–424

    Google Scholar 

  148. F. Nazarov, S. Treil, A. Volberg, The \(Tb\)-theorem on non-homogeneous spaces. Acta Math. 190, 151–239 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  149. F. Nazarov, S. Treil, A. Volberg, Two weight inequalities for individual Haar multipliers and other well localized operators. Math. Res. Lett. 15(3), 583–597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  150. F. Nazarov, S. Treil, A. Volberg, Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures. Preprint 2005 posted in 2010. arXiv:1003.1596

  151. R. Oberlin, Sparse bounds for a prototypical singular Radon transform. Canadian Math. Bull. 62(2), 405–415 (2019)

    Google Scholar 

  152. K. Okikiolu, Characterization of subsets of rectifiable curves in \({\mathbb{R}}^{n}\). J. Lond. Math. Soc. (2) 46(2), 336–348 (1992)

    Google Scholar 

  153. C. Ortiz-Caraballo, C. Pérez, E. Rela, Improving Bounds for Singular Operators via Sharp Reverse Hölder Inequality for\(A_{\infty }\). Operator Theory: Advances and Applications, vol. 229 (2013), pp. 303–321

    Google Scholar 

  154. M.C. Pereyra, Lecture notes on dyadic harmonic analysis. Contemp. Math. 289, 1–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  155. M.C. Pereyra, Weighted inequalities and dyadic harmonic analysis, in Excursions in Harmonic Analysis. Applied and Numerical Harmonic Analysis, vol. 2 (Birkhauser/Springer, New York, 2013), pp. 281–306

    Google Scholar 

  156. M.C. Pereyra, L.A. Ward, Harmonic Analysis: From Fourier to Wavelets. Student Mathematical Library Series, American Mathematical Society, vol. 63 (2012)

    Google Scholar 

  157. C. Pérez, Endpoint estimates for commutators of singular integral operators. J. Func. Anal. (1) 128, 163–185 (1995)

    Google Scholar 

  158. C. Pérez, A course on singular integrals and weights, in Harmonic and Geometric Analysis. Advanced courses in Mathematics C.R.M. Barcelona (Birkauser, Basel, 2015)

    Google Scholar 

  159. C. Pérez, E. Rela, A new quantitative two weight theorem for the Hardy-Littlewood maximal operator. Proc. Am. Math. Soc. 143, 641–655 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  160. C. Pérez, S. Treil, A. Volberg, Sharp weighted estimates for dyadic shifts and the \(A_2\) conjecture. J. Reine Angew. Math. (Crelle’s J.) 687, 43–86 (2014)

    Google Scholar 

  161. S. Petermichl, Dyadic shift and a logarithmic estimate for Hankel operators with matrix symbol. C. R. Acad. Sci. Paris Sér. I Math. 330(6), 455–460 (2000)

    Google Scholar 

  162. S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_p\) characteristic. Am. J. Math. 129, 1355–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  163. S. Petermichl, The sharp weighted bound for the Riesz transforms. Proc. Am. Math. Soc. 136(04), 1237–1249 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  164. S. Petermichl, S. Pott, An estimate for weighted Hilbert transform via square functions. Trans. Am. Math. Soc. 354, 281–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  165. S. Petermichl, A. Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular. Duke Math. J. 112(2), 281–305 (2002)

    Google Scholar 

  166. J. Pipher, L.A. Ward, BMO from dyadic BMO on the bidisc. J. Lond. Math. Soc. 77(2), 524–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  167. S. Pott, M.C. Reguera, Sharp Bekolle estimates for the Bergman projection. J. Func. Anal. 265(12), 3233–3244 (2013)

    Article  MATH  Google Scholar 

  168. E. Sawyer, A characterization of a two weight norm inequality for maximal functions. Studia Math. 75(1), 1–11 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  169. E. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. Am. Math. Soc. 308(2), 533–545 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  170. E. Sawyer, R.L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114(4), 813–874 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  171. E. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, 1st edn. (Princeton University Press, 1993)

    Google Scholar 

  172. C. Thiele, Time-frequency analysis in the discrete phase plane. Ph.D. Thesis Yale, 1995

    Google Scholar 

  173. C. Thiele, S. Treil, A. Volberg, Weighted martingale multipliers in the non-homogeneous setting and outer measure spaces. Adv. Math. 285, 1155–1188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  174. S. Treil, Sharp \(A_2\) estimates of Haar shifts via Bellman function, in Recent Trends in Analysis. Theta Series in Advanced Mathematics (Theta, Bucharest, 2013), pp. 187–208

    Google Scholar 

  175. S. Treil, A. Volberg, Wavelets and the angle between past and future. J. Func. Anal. 143(2), 269–308 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  176. V. Vasyunin, in Cincinnati Lectures on Bellman Functions ed. by L. Slavin. arXiv:1508.07668

  177. I. Verbitsky, Imbedding and multiplier theorems for discrete Littlewood-Paley spaces. Pac. J. Math. 176(2), 529–556 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  178. A. Volberg, Bellman Function Technique in Harmonic Analysis. Lectures of INRIA Summer School in Antibes (2011), pp. 1–58. arXiv:1106.3899

  179. A. Volberg, P. Zorin-Kranish, Sparse domination on non-homogeneous spaces with an application to \(A_p\) weights. Rev. Mat. Iberoam. 34(3), 1401–1414 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  180. E. Vuorinen, \(L^p(\mu ) \rightarrow L^q(\nu )\) characterization for well localized operators. J. Fourier Anal. Appl. 22(5), 1059–1075 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  181. E. Vuorinen, Two weight \(L^p\)-inequalities for dyadic shifts and the dyadic square function. Studia Math. 237(1), 25–56 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  182. D. Weirich, Weighted inequalities for dyadic operators over spaces of homogeneous type. Ph.D. Dissertation, University of New Mexico, 2018

    Google Scholar 

  183. B. Wick, Personal Communication (April 2016)

    Google Scholar 

  184. M. Wilson, Weighted inequalities for the dyadic square function without dyadic \(A_{\infty }\). Duke Math. J. 55, 19–49 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  185. M. Wilson, Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924 (Springer, Berlin, 2008)

    Google Scholar 

  186. J. Wittwer, A sharp estimate on the norm of the martingale transform. Math. Res. Lett. 7, 1–12 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  187. J. Wittwer, A sharp estimate on the norm of the continuous square function. Proc. Am. Math. Soc. 130(8), 2335–2342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  188. P. Zorin-Kranish, \(A_p-A_{\infty }\) estimates for multilinear maximal and sparse operators. J. Anal. Math

    Google Scholar 

Download references

Acknowledgements

I would like to thank Ursula Molter, Carlos Cabrelli, and all the organizers of the CIMPA 2017 Research School—IX Escuela Santaló: Harmonic Analysis, Geometric Measure Theory and Applications, held in Buenos Aires, Argentina from July 31 to August 11, 2017, for the invitation to give the course on which these lecture notes are based. It meant a lot to me to teach in the “Pabellón 1 de la Facultad de Ciencias Exactas”, having grown up hearing stories about the mythical Universidad de Buenos Aires (UBA) from my parents, Concepción Ballester and Victor Pereyra, and dear friends (such as Julián and Amanda Araoz, Manolo Bemporad, Mischa and Yanny Cotlar, Rebeca Guber, Mauricio and Gloria Milchberg, Cora Ratto and Manuel Sadosky, Cora Sadosky and Daniel Goldstein, and Cristina Zoltan, some sadly no longer with us.) who, like us, were welcomed in Venezuela in the late 60s and 70s, and to whom I would like to dedicate these lecture notes. Unfortunately, the flow is now being reversed as many Venezuelans of all walks of life are fleeing their country and many, among them mathematicians and scientists, are finding a home in other South American countries, in particular in Argentina. I would also like to thank the enthusiastic students and other attendants, as always; there is no course without an audience; you are always an inspiration for us. I thank the kind referee, who made many comments that greatly improved the presentation, and my former Ph.D. student David Weirich, who kindly provided the figures. Last but not least, I would like to thank my husband, who looked after our boys while I was traveling, and my family in Buenos Aires who lodged and fed me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cristina Pereyra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereyra, M.C. (2019). Dyadic Harmonic Analysis and Weighted Inequalities: The Sparse Revolution. In: Aldroubi, A., Cabrelli, C., Jaffard, S., Molter, U. (eds) New Trends in Applied Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-32353-0_7

Download citation

Publish with us

Policies and ethics