Skip to main content

Oxidative Stress Measurement in Semen and Seminal Plasma

  • Chapter
  • First Online:
Male Infertility

Abstract

Excessive generation of seminal reactive oxygen species (ROS) by immature spermatozoa and white blood cells, especially granulocytes, in the ejaculate is detrimental to spermatozoa. The cellular antioxidant defense mitigates the impact of elevated ROS production. The imbalance between ROS and available antioxidants results in oxidative stress (OS), leads to lipids peroxidation, alters proteins expression, and results in DNA fragmentation and male infertility. Accurate assessment of ROS is important as it provides information about oxidative stress as an underlying cause of male infertility. Different direct and indirect methods and instruments are available for the laboratory measurement of oxidative stress in seminal plasma and spermatozoa. The measurement of ROS by the chemiluminescence assay is a direct method that can measure both extracellular and intracellular (global) ROS in real-time using luminol as probe. This assay provides reference values that can help differentiate infertile men from fertile men. Total antioxidant capacity measurement in seminal plasma is indicative of the antioxidant reserves. DNA fragmentation is determined by several assays, including the TUNEL assay. The TUNEL assay measures single- and double-strand damage in spermatozoa as a result of oxidative stress. Measurement of oxidation reduction potential (ORP) in semen and seminal plasma is a measure of the redox potential or the oxidative stress status in a given sample. These tests can be included as advanced andrology screening diagnostic approaches that can complement routine semen analysis and can help explain the underlying cause of idiopathic or unexplained male infertility. This chapter outlines the importance of oxidative stress and its measurement in semen and seminal plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal A, Mulgund A, Hamada A. Chyatte MR. a unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nieschlag E. Andrology. Male reproductive health and dysfunction: Editors: Eberhard Nieschlag, Hermann M. Behre, Susan Nieschlag. 3rd ed. Springer–Verlag Berlin, Heidelberg, 2010.

    Google Scholar 

  3. Agarwal A, Sharma RK, Nallella KP, Thomas AJ Jr, Alvarez JG, Sikka SC. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril. 2006;86(4):878–85.

    Article  CAS  PubMed  Google Scholar 

  4. Aitken R. The role of free oxygen radicals and sperm function. Int J Androl. 1989;12(2):95–7.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48(6):835–50.

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.

    Article  PubMed  Google Scholar 

  7. Agarwal A, Sharma RK, Sharma R, Assidi M, Abuzenadah AM, Alshahrani S, et al. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014;12:33.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sawyer DE, Mercer BG, Wiklendt AM, Aitken RJ. Quantitative analysis of gene-specific DNA damage in human spermatozoa. Mutat Res Fundam Mol Mech Mutagen. 2003;529(1):21–34.

    Article  CAS  Google Scholar 

  9. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3(1):28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57(2):409–16.

    Article  CAS  PubMed  Google Scholar 

  11. Mahfouz R, Sharma R, Lackner J, Aziz N, Agarwal A. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil Steril. 2009;92(2):819–27.

    Article  CAS  PubMed  Google Scholar 

  12. Ayaz A, Agarwal A, Sharma R, Arafa M, Elbardisi H, Cui Z. Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men. Clin Proteomics. 2015;12(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14(11):2801–7.

    Article  CAS  PubMed  Google Scholar 

  15. Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. BioEssays. 1994;16(4):259–67.

    Article  CAS  PubMed  Google Scholar 

  16. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Men’s Health. 2014;32(1):1–17.

    Article  Google Scholar 

  17. Henkel R. Infection in infertility. In: Parekattil SJ, Agarwal A, editors. Male infertility: contemporary clinical approaches, andrology, ART & antioxidants. New York: Springer New York; 2012. p. 261–72.

    Chapter  Google Scholar 

  18. Tremellen K. Oxidative stress and male infertility--a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    Article  CAS  PubMed  Google Scholar 

  19. Palermo GD, Neri QV, Cozzubbo T, Rosenwaks Z. Perspectives on the assessment of human sperm chromatin integrity. Fertil Steril. 2014;102(6):1508–17.

    Article  CAS  PubMed  Google Scholar 

  20. Simon L, Proutski I, Stevenson M, Jennings D, McManus J, Lutton D, et al. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod Biomed Online. 2013;26(1):68–78.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Zhang Q, Wang Y, Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102(4):998–1005. e8.

    Article  CAS  PubMed  Google Scholar 

  22. Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  23. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN. Oxidative stress and male reproductive health. Asian J Androl. 2014;16(1):31.

    Article  CAS  PubMed  Google Scholar 

  25. Sharma R, Agarwal A. Laboratory evaluation of sperm chromatin: TUNEL assay. In: Zini A, Agarwal A, editors. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. New York: Springer New York; 2011. p. 201–15.

    Chapter  Google Scholar 

  26. Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rato L, Alves M, Cavaco J, Oliveira P. High-energy diets: a threat for male fertility? Obes Rev. 2014;15(12):996–1007.

    Article  CAS  PubMed  Google Scholar 

  28. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28(6):684–703.

    Article  CAS  PubMed  Google Scholar 

  29. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13(10):423–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doshi SB, Khullar K, Sharma RK, Agarwal A. Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol. 2012;10(1):109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal. 2009;11(4):791–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Griveau J, Lannou DL. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  33. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(2):335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keisari Y, Braun L, Flescher E. The oxidative burst and related phenomena in mouse macrophages elicited by different sterile inflammatory stimuli. Immunobiology. 1983;165(1):78–89.

    Article  CAS  PubMed  Google Scholar 

  35. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    Article  CAS  PubMed  Google Scholar 

  36. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.

    Article  CAS  PubMed  Google Scholar 

  37. Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.

    CAS  PubMed  Google Scholar 

  38. Bisht S, Dada R. Oxidative stress: major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front Biosci (Schol Ed). 2017;9:420–47.

    Article  Google Scholar 

  39. Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int. 2014;70:106–12.

    Article  PubMed  Google Scholar 

  40. Mostafa R, Nasrallah Y, Hassan M, Farrag A, Majzoub A, Agarwal A. The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia. 2018;50(3):e12910.

    Article  CAS  Google Scholar 

  41. Condorelli RA, Russo GI, Calogero AE, Morgia G, La Vignera S. Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. J Endocrinol Investig. 2017;40(11):1209–18.

    Article  CAS  Google Scholar 

  42. de Lamirande E, Leduc BE, Iwasaki A, Hassouna M, Gagnon C. Increased reactive oxygen species formation in semen of patients with spinal cord injury∗∗Supported by a grant from the Medical Research Council of Canada, Ottawa, Ontario, Canada to C.G.††Presented in part at the 1992 Annual Meeting of the American Urological Association, Washington, D.C., May 10 to 14, 1992. Fertil Steril. 1995;63(3):637–42.

    Article  PubMed  Google Scholar 

  43. Muthusami K, Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril. 2005;84(4):919–24.

    Article  CAS  PubMed  Google Scholar 

  44. Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr. 2005;135(5):969–72.

    Article  CAS  PubMed  Google Scholar 

  45. Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med. 2013;5(192):192ra85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Al-Gubory KH. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod Biomed Online. 2014;29(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  47. Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol. 2009;7(1):114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6(2):445–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metabol. 2008;93(8):3199–207.

    Article  CAS  Google Scholar 

  50. Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43.

    Article  CAS  PubMed  Google Scholar 

  51. Ford W, Whittington K, Williams A. Reactive oxygen species in human sperm suspensions: production by leukocytes and the generation of NADPH to protect sperm against their effects. Int J Androl. 1997;20:44–9.

    CAS  PubMed  Google Scholar 

  52. Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, Thomas AJ Jr, et al. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16(9):1922–30.

    Article  CAS  PubMed  Google Scholar 

  53. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  PubMed  Google Scholar 

  54. Agarwal A, Mulgund A, Sharma R, Sabanegh E. Mechanisms of oligozoospermia: an oxidative stress perspective. Syst Biol Reprod Med. 2014;60(4):206–16.

    Article  PubMed  Google Scholar 

  55. Aziz N, Saleh RA, Sharma RK, Lewis-Jones I, Esfandiari N, Thomas AJ, et al. Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil Steril. 2004;81(2):349–54.

    Article  CAS  PubMed  Google Scholar 

  56. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73(3):459–64.

    Article  CAS  PubMed  Google Scholar 

  57. Athayde KS, Cocuzza M, Agarwal A, Krajcir N, Lucon AM, Srougi M, et al. Development of normal reference values for seminal reactive oxygen species and their correlation with leukocytes and semen parameters in a fertile population. J Androl. 2007;28(4):613–20.

    Article  CAS  PubMed  Google Scholar 

  58. Kullisaar T, Türk S, Kilk K, Ausmees K, Punab M, Mändar R. Increased levels of hydrogen peroxide and nitric oxide in male partners of infertile couples. Andrology. 2013;1(6):850–8.

    Article  CAS  PubMed  Google Scholar 

  59. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approac. BJU Int. 2005;95(4):503–7.

    Article  CAS  PubMed  Google Scholar 

  60. Mahfouz R, Sharma R, Thiyagarajan A, Kale V, Gupta S, Sabanegh E, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94(6):2141–6.

    Article  CAS  PubMed  Google Scholar 

  61. Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26(5):279–85.

    Article  CAS  PubMed  Google Scholar 

  62. Hammadeh ME, Radwan M, Al-Hasani S, Micu R, Rosenbaum P, Lorenz M, et al. Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod Biomed Online. 2006;13(5):696–706.

    Article  CAS  PubMed  Google Scholar 

  63. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57(5):715S–25S.

    Article  CAS  PubMed  Google Scholar 

  64. Łuczaj W, Skrzydlewska E. DNA damage caused by lipid peroxidation products. Cell Mol Biol Lett. 2003;8(2):391–413.

    PubMed  Google Scholar 

  65. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.

    Article  CAS  PubMed  Google Scholar 

  67. Hoshi K, Katayose H, Yanagida K, Kimura Y, Sato A. The relationship between acridine orange fluorescence of sperm nuclei and the fertilizing ability of human sperm. Fertil Steril. 1996;66(4):634–9.

    Article  CAS  PubMed  Google Scholar 

  68. Gopalkrishnan K, Hurkadli K, Padwal V, Balaiah D. Use of acridine orange to evaluate chromatin integrity of human spermatozoa in different groups of infertile men. Andrologia. 1999;31(5):277–82.

    Article  CAS  PubMed  Google Scholar 

  69. Larson K, DeJonge C, Barnes A, Jost L, Evenson D. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;15(8):1717–22.

    Article  CAS  PubMed  Google Scholar 

  70. Cho C-L, Agarwal A, Majzoub A, Esteves SC. Clinical utility of sperm DNA fragmentation testing: concise practice recommendations. Transl Androl Urol. 2017;6:S366–S73.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lewis SEM, Simon L. Clinical implications of sperm DNA damage. Hum Fertil. 2010;13(4):201–7.

    Article  Google Scholar 

  72. Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol. 2009;590:377–402.

    Article  CAS  PubMed  Google Scholar 

  73. Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27(1):3–12.

    Article  PubMed  Google Scholar 

  74. Said TM, Aziz N, Sharma RK, Lewis-Jones I, Thomas AJ Jr, Agarwal A. Novel association between sperm deformity index and oxidative stress-induced DNA damage in infertile male patients. Asian J Androl. 2005;7(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  75. Zini A, San Gabriel M, Libman J. Lycopene supplementation in vitro can protect human sperm deoxyribonucleic acid from oxidative damage. Fertil Steril. 2010;94(3):1033–6.

    Article  CAS  PubMed  Google Scholar 

  76. Agarwal A, Said TM. Sperm chromatin assessment. In: Textbook of assisted reproductive techniques fourth edition: volume 1: Laboratory perspectives. Boca Raton: CRC Press; 2012. p. 75.

    Chapter  Google Scholar 

  77. Cho C-L, Esteves S, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  78. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82(2):378–83.

    Article  PubMed  Google Scholar 

  79. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663–8.

    Article  CAS  PubMed  Google Scholar 

  80. Simon L, Emery BR, Carrell DT. Diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56.

    Article  PubMed  Google Scholar 

  81. Agarwal A, Ahmad G, Sharma R. Reference values of reactive oxygen species in seminal ejaculates using chemiluminescence assay. J Assist Reprod Genet. 2015;32(12):1721–9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Benjamin D, Sharma RK, Moazzam A, Agarwal A. Methods for the detection of ROS in human sperm samples. New York: Humana Press; 2012. p. 257–74.

    Google Scholar 

  83. Baehner RL, Boxer LA, Davis J. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood. 1976;48(2):309–13.

    Article  CAS  PubMed  Google Scholar 

  84. Esfandiari N, Sharma RK, Saleh RA, Thomas AJ Jr, Agarwal A. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24(6):862–70.

    Article  CAS  PubMed  Google Scholar 

  85. Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem. 1997;272(30):18515–7.

    Article  CAS  PubMed  Google Scholar 

  86. Aitken RJ. Nitroblue tetrazolium (NBT) assay. Reprod Biomed Online. 2018;36(1):90–1.

    Article  PubMed  Google Scholar 

  87. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol. 1992;151(3):466–77.

    Article  CAS  PubMed  Google Scholar 

  88. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  89. Aitken RJ, Baker MA, O'Bryan M. Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. J Androl. 2004;25(4):455–65.

    Article  CAS  PubMed  Google Scholar 

  90. Shekarriz M, Thomas AJ Jr, Agarwal A. Incidence and level of seminal reactive oxygen species in normal men. Urology. 1995;45(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  91. Agarwal A, Gupta S, Sharma R. Reactive oxygen species (ROS) measurement. In: Agarwal A, Gupta S, Sharma R, editors. Andrological evaluation of male infertility: a laboratory guide. Cham: Springer International Publishing; 2016. p. 155–63.

    Chapter  Google Scholar 

  92. Guthrie HD, Welch GR. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J Anim Sci. 2006;84(8):2089–100.

    Article  CAS  PubMed  Google Scholar 

  93. De Iuliis GN, Wingate JK, Koppers AJ, McLaughlin EA, Aitken RJ. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J Clin Endocrinol Metab. 2006;91(5):1968–75.

    Article  PubMed  CAS  Google Scholar 

  94. Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg H-R, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635–42.

    Article  CAS  PubMed  Google Scholar 

  95. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Abad C, Amengual MJ, Prada E, et al. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology. 2013;1(5):715–22.

    Article  CAS  PubMed  Google Scholar 

  96. Sharma R, Agarwal A. Laboratory evaluation of sperm chromatin: TUNEL assay. In: Sperm chromatin. New York: Springer; 2011. p. 201–15.

    Chapter  Google Scholar 

  97. Samplaski MK, Agarwal A, Sharma R, Sabanegh E. New generation of diagnostic tests for infertility: review of specialized semen tests. Int J Urol. 2010;17(10):839–47.

    Article  PubMed  Google Scholar 

  98. Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol. 2013;927:121–36.

    Article  CAS  PubMed  Google Scholar 

  99. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33(2):291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Esteves SC, Gosalvez J, Lopez-Fernandez C, Nunez-Calonge R, Caballero P, Agarwal A, et al. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol. 2015;47(9):1471–7.

    Article  CAS  PubMed  Google Scholar 

  101. Gosálvez J, Rodríguez-Predreira M, Mosquera A, López-Fernández C, Esteves SC, Agarwal A, et al. Characterisation of a subpopulation of sperm with massive nuclear damage, as recognised with the sperm chromatin dispersion test. Andrologia. 2014;46(6):602–9.

    Article  PubMed  CAS  Google Scholar 

  102. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6.

    Article  PubMed  Google Scholar 

  103. Evenson DP. Sperm chromatin structure assay (SCSA(R)). Methods Mol Biol. 2013;927:147–64.

    Article  CAS  PubMed  Google Scholar 

  104. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.

    Article  CAS  PubMed  Google Scholar 

  105. Feijo CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101(1):58–63.e3.

    Article  CAS  PubMed  Google Scholar 

  106. Lewis SEM, John Aitken R, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27(4):325–37.

    Article  CAS  PubMed  Google Scholar 

  107. Evenson DP. Sperm chromatin structure assay (SCSA®). In: Carrell DT, Aston KI, editors. Spermatogenesis: methods and protocols. Totowa: Humana Press; 2013. p. 147–64.

    Chapter  Google Scholar 

  108. Evenson DP. The Sperm Chromatin Structure Assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016;169:56–75.

    Article  CAS  PubMed  Google Scholar 

  109. Ribeiro S, Sharma R, Gupta S, Cakar Z, De Geyter C, Agarwal A. Inter- and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology. 2017;5(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  110. Gupta S, Sharma R, Agarwal A. Inter-and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Curr Protoc Toxicol. 2017;74(1):16.1.1–16.1.22.

    Article  CAS  Google Scholar 

  111. Agarwal A, Cho C-L, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6(Suppl 4):S720–S33.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online. 2003;7(4):477–84.

    Article  PubMed  Google Scholar 

  113. Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81(4):965–72.

    Article  CAS  PubMed  Google Scholar 

  114. Sergerie M, Laforest G, Bujan L, Bissonnette F, Bleau G. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod. 2005;20(12):3446–51.

    Article  CAS  PubMed  Google Scholar 

  115. Erenpreiss J, Jepson K, Giwercman A, Tsarev I, Erenpreisa J, Spano M. Toluidine blue cytometry test for sperm DNA conformation: comparison with the flow cytometric sperm chromatin structure and TUNEL assays. Hum Reprod. 2004;19(10):2277–82.

    Article  CAS  PubMed  Google Scholar 

  116. Domínguez-Fandos D, Camejo MI, Ballesca JL, Oliva R. Human sperm DNA fragmentation: correlation of TUNEL results as assessed by flow cytometry and optical microscopy. Cytometry A. 2007;71(12):1011–8.

    Article  PubMed  CAS  Google Scholar 

  117. Muratori M, Forti G, Baldi E. Comparing flow cytometry and fluorescence microscopy for analyzing human sperm DNA fragmentation by TUNEL labeling. Cytometry A. 2008;73(9):785–7.

    Article  PubMed  Google Scholar 

  118. Muratori M, Tamburrino L, Marchiani S, Guido C, Forti G, Baldi E. Critical aspects of detection of sperm DNA fragmentation by TUNEL/flow cytometry. Syst Biol Reprod Med. 2010;56(4):277–85.

    Article  CAS  PubMed  Google Scholar 

  119. Simon L, Lutton D, McManus J, Lewis SEM. Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril. 2011;95(2):652–7.

    Article  PubMed  Google Scholar 

  120. Baumgartner A, Cemeli E, Anderson D. The comet assay in male reproductive toxicology. Cell Biol Toxicol. 2009;25(1):81–98.

    Article  CAS  PubMed  Google Scholar 

  121. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–21.

    Article  CAS  PubMed  Google Scholar 

  122. Simon L, Carrell DT. Sperm DNA damage measured by comet assay. Methods Mol Biol. 2013;927:137–46.

    Article  CAS  PubMed  Google Scholar 

  123. Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online. 2007;14(6):746–57.

    Article  CAS  PubMed  Google Scholar 

  124. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996;2(8):613–9.

    Article  CAS  PubMed  Google Scholar 

  125. Cortes-Gutierrez EI, Lopez-Fernandez C, Fernandez JL, Davila-Rodriguez MI, Johnston SD, Gosalvez J. Interpreting sperm DNA damage in a diverse range of mammalian sperm by means of the two-tailed comet assay. Front Genet. 2014;5:404.

    PubMed  PubMed Central  Google Scholar 

  126. Fernandez JL, Vazquez-Gundin F, Rivero MT, Genesca A, Gosalvez J, Goyanes V. DBD-fish on neutral comets: simultaneous analysis of DNA single- and double-strand breaks in individual cells. Exp Cell Res. 2001;270(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  127. Rivero MT, Vazquez-Gundin F, Muriel L, Goyanes V, Gosalvez J, Fernandez JL. Patterns of DNA migration in two-dimensional single-cell gel electrophoresis analyzed by DNA breakage detection-fluorescence in situ hybridization. Environ Mol Mutagen. 2003;42(3):223–7.

    Article  CAS  PubMed  Google Scholar 

  128. Zee YP, Lopez-Fernandez C, Arroyo F, Johnston SD, Holt WV, Gosalvez J. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage. Reproduction. 2009;138(2):267–78.

    Article  CAS  PubMed  Google Scholar 

  129. Lewis SEM, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis. 2008;23(3):163–70.

    Article  CAS  PubMed  Google Scholar 

  130. Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.

    CAS  PubMed  Google Scholar 

  131. Fernandez JL, Vazquez-Gundin F, Delgado A, Goyanes VJ, Ramiro-Diaz J, de la Torre J, et al. DNA breakage detection-FISH (DBD-FISH) in human spermatozoa: technical variants evidence different structural features. Mutat Res. 2000;453(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  132. Muriel L, Segrelles E, Goyanes V, Gosalvez J, Fernandez JL. Structure of human sperm DNA and background damage, analysed by in situ enzymatic treatment and digital image analysis. Mol Hum Reprod. 2004;10(3):203–9.

    Article  CAS  PubMed  Google Scholar 

  133. Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.

    Article  PubMed  CAS  Google Scholar 

  134. Ankem MK, Mayer E, Ward WS, Cummings KB, Barone JG. Novel assay for determining DNA organization in human spermatozoa: implications for male factor infertility. Urology. 2002;59(4):575–8.

    Article  PubMed  Google Scholar 

  135. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 2006;27(1):53–59.

    Article  CAS  PubMed  Google Scholar 

  136. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond). 1993;84(4):407–12.

    Article  CAS  Google Scholar 

  137. Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril. 2009;91(3):805–11.

    Article  PubMed  Google Scholar 

  138. Roychoudhury S, Sharma R, Sikka S, Agarwal A. Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility. J Assist Reprod Genet. 2016;33(5):627–35.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ, Agarwal A. The reactive oxygen species—total antioxidant capacity score is a new measure of oxidative stress to predict male infertilit. Hum Reprod. 1999;14(11):2801–7.

    Article  CAS  PubMed  Google Scholar 

  140. Sharma RK, Pasqualotto AE, Nelson DR, Thomas AJ Jr, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.

    CAS  PubMed  Google Scholar 

  141. Pasqualotto FF, Sundaram A, Sharma RK, Borges E Jr, Pasqualotto EB, Agarwal A. Semen quality and oxidative stress scores in fertile and infertile patients with varicocele. Fertil Steril. 2008;89(3):602–7.

    Article  PubMed  Google Scholar 

  142. Kohen R, Nyska A. Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–50.

    Article  CAS  PubMed  Google Scholar 

  143. Chirico S, Smith C, Marchant C, Mitchinson MJ, Halliwell B. Lipid peroxidation in hyperlipidaemic patients. A study of plasma using an HPLC-based thiobarbituric acid test. Free Radic Res Commun. 1993;19(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  144. Grotto D, Santa Maria LD, Boeira S, Valentini J, Charao MF, Moro AM, et al. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharm Biomed Anal. 2007;43(2):619–24.

    Article  CAS  PubMed  Google Scholar 

  145. Bell M, Sikka S, Rajasekaran M, Hellstrom W. Time course of hydrogen peroxide induced changes in the lipid peroxidation of human sperm membranes. Adv Contracept Deliv Syst. 1992;8(1–2):144–50.

    CAS  PubMed  Google Scholar 

  146. Weber D, Milkovic L, Bennett SJ, Griffiths HR, Zarkovic N, Grune T. Measurement of HNE-protein adducts in human plasma and serum by ELISA-comparison of two primary antibodies. Redox Biol. 2013;1:226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Khosrowbeygi A, Zarghami N. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters. BMC Clin Pathol. 2007;7:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Agarwal A, Sharma R, Durairajanayagam D, Ayaz A, Cui Z, Willard B, et al. Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol. 2015;13:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A. 2004;101(12):4003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52(4):601–23.

    Article  CAS  PubMed  Google Scholar 

  151. Herrero MB, de Lamirande E, Gagnon C. Tyrosine nitration in human spermatozoa: a physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide. Mol Hum Reprod. 2001;7(10):913–21.

    Article  CAS  PubMed  Google Scholar 

  152. Bollineni RC, Fedorova M, Blüher M, Hoffmann R. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus. J Proteome Res. 2014;13(11):5081–93.

    Article  CAS  PubMed  Google Scholar 

  153. Morielli T, O'Flaherty C. Oxidative stress impairs function and increases redox protein modifications in human spermatozoa. Reproduction. 2015;149(1):113–23.

    Article  PubMed  CAS  Google Scholar 

  154. Romeo C, Ientile R, Impellizzeri P, Turiaco N, Teletta M, Antonuccio P, et al. Preliminary report on nitric oxide-mediated oxidative damage in adolescent varicocele. Hum Reprod. 2003;18(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  155. Samanta L, Swain N, Ayaz A, Venugopal V, Agarwal A. Post-translational modifications in sperm proteome: the chemistry of proteome diversifications in the pathophysiology of male factor infertility. Biochim Biophys Acta Gen Subj. 2016;1860(7):1450–65.

    Article  CAS  Google Scholar 

  156. Sharma R, Agarwal A, Mohanty G, Du Plessis SS, Gopalan B, Willard B, et al. Proteomic analysis of seminal fluid from men exhibiting oxidative stress. Reprod Biol Endocrinol. 2013;11:85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sharma R, Agarwal A, Mohanty G, Hamada AJ, Gopalan B, Willard B, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol. 2013;11:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Agarwal A, Ayaz A, Samanta L, Sharma R, Assidi M, Abuzenadah AM, et al. Comparative proteomic network signatures in seminal plasma of infertile men as a function of reactive oxygen species. Clin Proteomics. 2015;12(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Agarwal A, Allamaneni SS, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online. 2004;9(4):466–8.

    Article  CAS  PubMed  Google Scholar 

  160. Marshburn PB, Giddings A, Causby S, Matthews ML, Usadi RS, Steuerwald N, et al. Influence of ejaculatory abstinence on seminal total antioxidant capacity and sperm membrane lipid peroxidation. Fertil Steril. 2014;102(3):705–10.

    Article  CAS  PubMed  Google Scholar 

  161. Kumar D, Salian SR, Kalthur G, Uppangala S, Kumari S, Challapalli S, et al. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation. Environ Res. 2014;132:297–304.

    Article  CAS  PubMed  Google Scholar 

  162. Kasperczyk A, Dobrakowski M, Czuba ZP, Horak S, Kasperczyk S. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile. Toxicol Appl Pharmacol. 2015;284(3):339–44.

    Article  CAS  PubMed  Google Scholar 

  163. Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas AJ, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  164. Tremellen K, Tunc O. Macrophage activity in semen is significantly correlated with sperm quality in infertile men. Int J Androl. 2010;33(6):823–31.

    Article  CAS  PubMed  Google Scholar 

  165. Victorin K, Hellström KG, Rylander R. Redox potential measurements for determining the disinfecting power of chlorinated water. J Hyg. 1972;70(2):313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rael LT, Bar-Or R, Aumann RM, Slone DS, Mains CW, Bar-Or D. Oxidation–reduction potential and paraoxonase–arylesterase activity in trauma patients. Biochem Biophys Res Commun. 2007;361(2):561–5.

    Article  CAS  PubMed  Google Scholar 

  167. Rael LT, Bar-Or R, Mains CW, Slone DS, Levy AS, Bar-Or D. Plasma oxidation-reduction potential and protein oxidation in traumatic brain injury. J Neurotrauma. 2009;26(8):1203–11.

    Article  PubMed  Google Scholar 

  168. Shapiro HM. Redox balance in the body: an approach to quantitation. J Surg Res. 1972;13(3):138–52.

    Article  CAS  PubMed  Google Scholar 

  169. Bjugstad KB, Rael LT, Levy S, Carrick M, Mains CW, Slone DS, et al. Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxid Med Cell Longev. 2016;2016:6974257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Bjugstad K, Fanale C, Wagner J, Jensen J, Salottolo K, Rael L, et al. A 24 h delay in the redox response distinguishes the most severe stroke patients from less severe stroke patients. J Neurol Neurophys. 2016;7:1000395.

    Article  Google Scholar 

  171. Agarwal A, Gupta S, Sharma R. Oxidation–reduction potential measurement in ejaculated semen samples. In: Agarwal A, Gupta S, Sharma R, editors. Andrological evaluation of male infertility: a laboratory guide. Cham: Springer International Publishing; 2016. p. 165–70.

    Chapter  Google Scholar 

  172. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016;106(3):566–73.e10.

    Article  CAS  PubMed  Google Scholar 

  173. Rael LT, Bar-Or R, Kelly MT, Carrick MM, Bar-Or D. Assessment of oxidative stress in patients with an isolated traumatic brain injury using disposable electrochemical test strips. Electroanalysis. 2015;27(11):2567–73.

    Article  CAS  Google Scholar 

  174. Bar-Or R, Bar-Or D, Rael LT. Method and apparatus for measuring oxidation-reduction potential. Google Patents; 2016.

    Google Scholar 

  175. Agarwal A, Arafa M, Chandrakumar R, Majzoub A, AlSaid S, Elbardisi H. A multicenter study to evaluate oxidative stress by oxidation–reduction potential, a reliable and reproducible method. Andrology. 2017;5(5):939–45.

    Article  CAS  PubMed  Google Scholar 

  176. Agarwal A, Henkel R, Sharma R, Tadros NN, Sabanegh E. Determination of seminal oxidation–reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. Andrologia. 2018;50(3):e12914.

    Article  CAS  Google Scholar 

  177. Agarwal A, Wang SM. Clinical relevance of oxidation-reduction potential in the evaluation of male infertility. Urology. 2017;104:84–9.

    Article  PubMed  Google Scholar 

  178. Agarwal A, Roychoudhury S, Sharma R, Gupta S, Majzoub A, Sabanegh E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: clinical utility in male factor infertility. Reprod Biomed Online. 2017;34(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  179. World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2010.

    Google Scholar 

  180. Arafa M, Agarwal A, Al Said S, Majzoub A, Sharma R, Bjugstad KB, et al. Semen quality and infertility status can be identified through measures of oxidation–reduction potential. Andrologia. 2018;50(2):e12881.

    Article  CAS  Google Scholar 

  181. Majzoub A, Arafa M, Mahdi M, Agarwal A, Al Said S, Al-Emadi I, et al. Oxidation–reduction potential and sperm DNA fragmentation, and their associations with sperm morphological anomalies amongst fertile and infertile men. Arab J Urol. 2018;16(1):87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26(7):1628–40.

    Article  PubMed  Google Scholar 

  183. Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrari F, De Stefani S, et al. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online. 2012;25(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  184. Arafa M, ElBardisi H, Majzoub A, Alsaid S, AlNawasra H, Khalafalla K, et al. Correlation of sperm DNA fragmentation and seminal oxidation reduction potential in infertile men. Biomedicine. 2017;26:68–78.

    Google Scholar 

  185. Agarwal A, Sharma R, Henkel R, Roychoudhury S, Sikka SC, du Plessis S, et al. Cumene hydroperoxide induced changes in oxidation–reduction potential in fresh and frozen seminal ejaculates. Andrologia. 2018;50(1):e12796.

    Article  CAS  Google Scholar 

  186. Roychoudhury S, Maldonado-Rosas I, Agarwal A, Esteves SC, Henkel R, Sharma R. Human sperm handling in intracytoplasmic sperm injection processes: in vitro studies on mouse oocyte activation, embryo development competence and sperm oxidation–reduction potential. Andrologia. 2018;50(4):e12943.

    Article  CAS  Google Scholar 

  187. Majzoub A, Arafa M, Elbardisi H, Al Said S, Agarwal A, Al Rumaihi K, editors. Oxidation reduction potential and sperm DNA fragmentation levels in sperm morphologic anomalies. In: Human reproduction. Oxford: Oxford University Press; 2017.

    Google Scholar 

  188. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney A, Lynch CD, Kim S, et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil Steril. 2014;101(2):453–62.

    Article  PubMed  Google Scholar 

  189. Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril. 2014;102(6):1502–7.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics∗‡. Hum Reprod Update. 2010;16(3):231–45.

    Article  PubMed  Google Scholar 

  191. Haghighian HK, Haidari F, Mohammadi-asl J, Dadfar M. Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertil Steril. 2015;104(2):318–24.

    Article  CAS  PubMed  Google Scholar 

  192. Chen Q, Deng T, Han D. Testicular immunoregulation and spermatogenesis. Semin Cell Dev Biol. 2016;59:157–65.

    Article  CAS  PubMed  Google Scholar 

  193. Ayaz A, Balaban B, Sikka S, Isiklar A, Tasdemir M, Urman B, editors. Effect of seminal ORP value on embryo quality and clinical pregnancy rate. In: Human reproduction. Oxford: Oxford University Press; 2017.

    Google Scholar 

  194. Saleh R, Agarwal A, editors. High levels of seminal oxidation reduction potential (ORP) in infertile men with clinical varicocele. In: Human reproduction. Oxford: Oxford University Press; 2017.

    Google Scholar 

  195. Sikka S, Toor J, Daniels L, Yafi F, Hellstrom W. Measurement of oxidation-reduction potential (ORP) as a newer tool indicative of oxidative stress in infertile men with leukocytospermia: poster# 132. Andrology. 2016;4:59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Agarwal, A. (2020). Oxidative Stress Measurement in Semen and Seminal Plasma. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics