Skip to main content

Male Age and Andropause

  • Chapter
  • First Online:
Male Infertility
  • 1666 Accesses

Abstract

It has long been presumed that a decline in testosterone occurs with increased male age. This notion is now definitively recognized and its impact on men’s health and fertility can be quite significant. The decline in androgens with age is likely multifactorial and can result in a collection of symptoms including fatigue and decreased libido. This collection of symptoms occurring with advanced male age has been termed andropause and can significantly impact male fertility, metabolic health, and quality of life. What was once considered a recent trend toward delayed parenthood has now become an established norm within modern society. Although maternal age has been well established as a strong predictor for fertility success, attention has been increasingly diverted toward the role that paternal age plays as well. Sperm DNA fragmentation, age-related endocrine changes, and increased susceptibility to reactive oxygen species have all been linked to age-related infertility. In addition to the effect advanced paternal age has on fertility, it has also been shown to play a role in the genetic health of future offspring. Recent studies demonstrate that the variability in the mutation rate in offspring is closely associated with the age of the father at time of conception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Templeton A. Infertility-epidemiology, aetiology and effective management. Health Bull (Edinb). 1995;53(5):294–8.

    CAS  Google Scholar 

  2. Lubna P, Santoro N. Age-related decline in fertility. Endocrinol Metab Clin N Am. 2003;32:669–88.

    Article  Google Scholar 

  3. Lansac J. Delayed parenting. Is delayed childbearing a good thing? Hum Reprod. 1995;10(5):1033–5.

    Article  CAS  PubMed  Google Scholar 

  4. Handelsman DJ. Sperm output of healthy men in Australia: magnitude of bias due to self-selected volunteers. Hum Reprod. 1997;12:2701–5.

    Article  CAS  PubMed  Google Scholar 

  5. Cohn BA, Overstreet JW, Fogel RJ, Brazil CK, Baird DD, Cirillo PM. Epidemiologic studies of human semen quality: considerations for study design. Am J Epidemiol. 2002;155:664–71.

    Article  PubMed  Google Scholar 

  6. Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril. 2001;75:237.

    Article  CAS  PubMed  Google Scholar 

  7. Brahem S, Mehdi M, Elghezal H, et al. The effects of male aging on semen quality, sperm DNA fragmentation and chromosomal abnormalities in an infertile population. J Assist Reprod Genet. 2011;28:425.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kühnert B, Nieschlag E. Reproductive functions of the ageing male. Hum Reprod Update. 2004;10:327.

    Article  PubMed  Google Scholar 

  9. Li Y, Lin H, Cao J. Association between socio-psycho- behavioral factors and male semen quality: systematic review and meta-analyses. Fertil Steril. 2011;95:116.

    Article  PubMed  Google Scholar 

  10. Ford WCL, North K, Taylor H, Farrow A, Hull MGR, Golding J. The ALSPAC study team. Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. Hum Reprod. 2000;15:1703–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sunderam S, Kissin DM, Crawford SB, et al. Assisted reproductive technology surveillance—United States, 2015. MMWR Surveill Summ. 2018;67(SS-3):1–28.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87:589.

    Article  CAS  PubMed  Google Scholar 

  13. Kupelian V, Page ST, Araujo AB, et al. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab. 2006;91:843.

    Article  CAS  PubMed  Google Scholar 

  14. Simon D, Charles MA, Lahlou N, et al. Androgen therapy improves insulin sensitivity and decreases leptin level in healthy adult men with low plasma total testosterone: a 3-month randomized placebo-controlled trial. Diabetes Care. 2001;24:2149.

    Article  CAS  PubMed  Google Scholar 

  15. Kapoor D, Aldred H, Clark S, et al. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30:911.

    Article  CAS  PubMed  Google Scholar 

  16. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153:1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cesselli D, Aleksova A, Sponga S, et al. Cardiac cell senescence and redox signaling. Front Cardiovasc Med. 2017;4:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stegeman R, Weake VM. Transcriptional signatures of aging. J Mol Biol. 2017;429:2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu T, Pan Y, Kao SY, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429:883.

    Article  CAS  PubMed  Google Scholar 

  20. Ng KK, Donat R, Chan L, Lalak A, Di Pierro I, Handelsman DJ. Sperm output of older men. Hum Reprod. 2004;8:1811–5.

    Article  Google Scholar 

  21. Hassan MAM, Killick SR. Effect of male age on fertility evidence for the decline in male fertility with increasing age. Fertil Steril. 2003;79:1520–7.

    Article  PubMed  Google Scholar 

  22. Berling S, Wolner-Hanssen P. No evidence of deteriorating semen quality among men in infertile relationships during the last decade: a study of males from southern Sweden. Hum Reprod. 1997;12:1002–5.

    Article  CAS  PubMed  Google Scholar 

  23. Hommonai ZT, Fainman N, David MP, Paz GF. Semen quality and sex hormone pattern of 29 middle aged men. Andrologia. 1982;14:164–70.

    Article  Google Scholar 

  24. Stone BA, Alex A, Werlin LB, et al. Age thresholds for changes in semen parameters in men. Fertil Steril. 2013;100:952.

    Article  PubMed  Google Scholar 

  25. Johnson SL, Dunleavy J, Gemmell NJ, et al. Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev. 2015;19:22.

    Article  PubMed  Google Scholar 

  26. Wyrobek AJ, Eskenazi B, Young S, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci U S A. 2006;103:9601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rybar R, Kopecka V, Prinosilova P, et al. Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia. 2011;43:286.

    Article  CAS  PubMed  Google Scholar 

  28. Neaves WB, Johnson L, Porter JC, Parker CR, Petty S. Leydig cell numbers, daily sperm production and serum gonadotropin levels in aging men. J Clin Endocrinol Metab. 1984;59:756–63.

    Article  CAS  PubMed  Google Scholar 

  29. Hermann M, Untergasser G, Rumpold H, Berger P. Aging of the male reproductive system. Exp Gerontol. 2000;35:1267–79.

    Article  CAS  PubMed  Google Scholar 

  30. Coffey DS, Berry SJ, Ewing LL. An overview of current concepts in the study of benign prostate hyperplasia. In: Rodgers CH, Coffey DS, Cunha G, Grayhack JT, Hinman F, Horton R, editors. Benign prostatic hyperplasia, vol. II. Washington, DC: US Department of Health and Human Services, NIH publication no. 87–2881; 1987. p. 1–13.

    Google Scholar 

  31. Aitken RJ, De Iuliis GN, Finnie JM, et al. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25:2415.

    Article  CAS  PubMed  Google Scholar 

  32. De Iuliis GN, Thomson LK, Mitchell LA, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81:517.

    Article  CAS  PubMed  Google Scholar 

  33. May-Panloup P, Chrétien MF, Savagner F, et al. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod. 2003;18:550.

    Article  PubMed  Google Scholar 

  34. Piette C, de Mouzon J, Bachelot A, Spira A. In-vitro fertilization: influence of women’s age on pregnancy rates. Hum Reprod. 1990;5:56–9.

    Article  CAS  PubMed  Google Scholar 

  35. Gallardo E, Simón C, Levy M. Effect of age on sperm fertility potential: oocyte donation as a model. Fertil Steril. 1996;66:260–4.

    Article  CAS  PubMed  Google Scholar 

  36. Paulson RJ, Milligan RC, Sokol RZ. The lack of influence of age on male fertility. Am J Obstet Gynecol. 2001;184:818–22.

    Article  CAS  PubMed  Google Scholar 

  37. Wu Y, Kang X, Zheng H, et al. Effect of paternal age on reproductive outcomes of in vitro fertilization. PLoS One. 2015;10:e0135734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McPherson NO, Zander-Fox D, Vincent AD, et al. Combined advanced parental age has an additive negative effect on live birth rates-data from 4057 first IVF/ICSI cycles. J Assist Reprod Genet. 2017; https://doi.org/10.1007/s10815-017-1054-8.

  39. López G, Lafuente R, Checa MA, Carreras R, Brassesco M. Diagnostic value of sperm DNA fragmentation and sperm high-magnification for predicting outcome of assisted reproduction treatment. Asian J Androl. 2013;15(6):790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, et al. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19:1401–8.

    Article  CAS  PubMed  Google Scholar 

  41. Homer H. Preimplantation genetic testing for aneuploidy (PGT-A): the biology, the technology and the clinical outcomes. Aust N Z J Obstet Gynaecol. 2019;59:317.

    Article  PubMed  Google Scholar 

  42. Singh NP, Muller CH, Berger RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril. 2003;80:1420–30.

    Article  PubMed  Google Scholar 

  43. Desai N, Sabanegu E Jr, Kim T, Agarwal A. Free radical theory of aging: implications in male infertility. Urology. 2010;75:14–9.

    Article  PubMed  Google Scholar 

  44. Angelopoulou R, Lavranos G, Manolakou P. ROS in the aging male: model diseases with ROS-related pathophysiology. Reprod Toxicol. 2009;28:167–71.

    Article  CAS  PubMed  Google Scholar 

  45. Olsen SD, Magenis RE. Preferential paternal origin of de novo structural chromosome rearrangements. In: Daniel A, editor. The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss; 1988. p. 583–99.

    Google Scholar 

  46. Jones KL, Smith DW, Harvey MA, et al. Older paternal age and fresh gene mutation: data on additional disorders. J Pediatr. 1975;86:84.

    Article  CAS  PubMed  Google Scholar 

  47. Jung A, Schuppe HC, Schill WB. Are children of older fathers at risk for genetic disorders? Andrologia. 2003;35(4):191–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ramasamy R, Chiba K, Butler P, et al. Male biological clock: a critical analysis of advanced paternal age. Fertil Steril. 2015;103:1402.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kong A, Frigge ML, Masson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sloter E, Nath J, Eskenazi B, et al. Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril. 2004;81:925.

    Article  PubMed  Google Scholar 

  51. Zaragoza MV, Jacobs PA, James RS, et al. Nondisjunction of human acrocentric chromosomes: studies of 432 trisomic fetuses and liveborns. Hum Genet. 1994;94:411.

    Article  CAS  PubMed  Google Scholar 

  52. McIntosh GC, Olshan AF, Baird PA. Paternal age and the risk of birth defects in offspring. Epidemiology. 1995;6:282.

    Article  CAS  PubMed  Google Scholar 

  53. Sipos A, Rasmussen F, Harrison G, et al. Paternal age and schizophrenia: a population based cohort study. BMJ. 2004;329:1070.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reichenberg A, Gross R, Weiser M, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63:1026–32.

    Article  PubMed  Google Scholar 

  55. Buizer-Voskamp JE, Laan W, Staal WG, et al. Paternal age and psychiatric disorders: findings from a Dutch population registry. Schizophr Res. 2011;129:128.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dalman C, Allebeck P. Paternal age and schizophrenia: further support for an association. Am J Psychiatry. 2002;159:1591–2.

    Article  PubMed  Google Scholar 

  57. Frans EM, Sandin S, Reichenberg A, et al. Advancing paternal age and bipolar disorder. Arch Gen Psychiatry. 2008;65:1034.

    Article  PubMed  Google Scholar 

  58. Hemminki K, Kyyronen P. Parental age and risk of sporadic and familial cancer in offspring: implications for germ cell mutagenesis. Epidemiology. 1999;10:747–51.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Kreger BE, Dorgan JF, Cupples LA, Myers RH, Splansky GL, Schatzkin A, Ellison RC. Parental age at child’s birth and son’s risk of prostate cancer. The Framingham study. Am J Epidemiol. 1999;150:1208–12.

    Article  CAS  PubMed  Google Scholar 

  60. Johnson L, Zane RS, Petty CS, et al. Quantification of the human Sertoli cell population: its distribution, relation to germ cell numbers, and age-related decline. Biol Reprod. 1984;31:785.

    Article  CAS  PubMed  Google Scholar 

  61. Toriello HV, Meck JM. Professional practice guidelines committee: statement on guidance for genetic counseling in advanced paternal age. Genet Med. 2008;10:457.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Orioli IM, Castilla EE, Scarano G, et al. Effect of paternal age in achondroplasia, thanatophoric dysplasia, and osteogenesis imperfecta. Am J Med Genet. 1995;59:209.

    Article  CAS  PubMed  Google Scholar 

  63. Murray L, McCarron P, Bailie K, et al. Association of early life factors and acute lymphoblastic leukaemia in childhood: historical cohort study. Br J Cancer. 2002;86:356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilkie AO, Slaney SF, Oldridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165.

    Article  CAS  PubMed  Google Scholar 

  65. Glaser RL, Broman KW, Schulman RL, Eskenazi B, Wyrobek AJ, Jabs EW. The paternal-age effect in Apert syndrome is due, in part, to the increased frequency of mutations in sperm. Am J Hum Genet. 2003;73:939–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Glaser RL, Jiang W, Boyadjiev SA, Tran AK, Zachary AA, Van Maldergem L, Johnson D, Walsh S, Oldridge M, Wall SA, et al. Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. Am J Hum Genet. 2000;66:768–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jones CM, Boelaert K. The endocrinology of ageing: a mini-review. Gerontology. 2015;61:291.

    Article  CAS  PubMed  Google Scholar 

  68. Bonavera JJ, Swerdloff RS, Leung A, et al. In the male brown-Norway (BN) male rat, reproductive aging is associated with decreased LH-pulse amplitude and area. J Androl. 1997;18:359.

    CAS  PubMed  Google Scholar 

  69. Gruenewald DA, Naai MA, Marck BT, Matsumoto AM. Age-related decrease in hypothalamic gonadotropin-releasing hormone (GnRH) gene expression, but not pituitary responsiveness to GnRH, in the male Brown Norway rat. J Androl. 2000;21(1):72–84.

    CAS  PubMed  Google Scholar 

  70. Wu FC, Tajar A, Pye SR, et al. Hypothalamic-pituitary- testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European male aging study. J Clin Endocrinol Metab. 2008;93:2737.

    Article  CAS  PubMed  Google Scholar 

  71. Ferrini RL, Barrett-Connor E. Sex hormones and age: a cross-sectional study of testosterone and estradiol and their bioavailable fractions in community-dwelling men. Am J Epidemiol. 1998;147:750.

    Article  CAS  PubMed  Google Scholar 

  72. Pirke KM, Sintermann R, Vogt HJ. Testosterone and testosterone precursors in the spermatic vein and in the testicular tissue of old men: reduced oxygen supply may explain the relative increase of testicular progesterone and 17 alpha-hydroxyprogesterone content and production in old age. Gerontology. 1980;26:221.

    Article  CAS  PubMed  Google Scholar 

  73. Camacho EM, Huhtaniemi IT, O’Neill TW, et al. Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European male ageing study. Eur J Endocrinol. 2013;168:445.

    Article  CAS  PubMed  Google Scholar 

  74. Liu PY, Beilin J, Meier C, et al. Age-related changes in serum testosterone and sex hormone binding globulin in Australian men: longitudinal analyses of two geographically separate regional cohorts. J Clin Endocrinol Metab. 2007;92:3599.

    Article  CAS  PubMed  Google Scholar 

  75. Kupelian V, Shabsigh R, Travison TG, et al. Is there a relationship between sex hormones and erectile dysfunction? Results from the Massachusetts male aging study. J Urol. 2006;176:2584.

    Article  CAS  PubMed  Google Scholar 

  76. Clavijo RI, Ramasamy R. Testosterone replacement should be given to men with erectile dysfunction: pro. J Urol. 2017;197:284.

    Article  PubMed  Google Scholar 

  77. Bagatell CJ, Bremner WJ. Androgens in men—uses and abuses. N Engl J Med. 1996;334:707.

    Article  CAS  PubMed  Google Scholar 

  78. Krasnoff JB, Basaria S, Pencina MJ, et al. Free testosterone levels are associated with mobility limitation and physical performance in community-dwelling men: the framing- ham offspring study. J Clin Endocrinol Metab. 2010;95:2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matsumoto A. Testosterone prevents synaptic loss in the perineal motoneuron pool in the spinal cord in male rats exposed to chronic stress. Stress. 2005;8:133–40.

    Article  CAS  PubMed  Google Scholar 

  80. Orwoll E, Lambert LC, Marshall LM, et al. Endogenous testosterone levels, physical performance, and fall risk in older men. Arch Intern Med. 2006;166:2124.

    Article  PubMed  Google Scholar 

  81. Fink HA, Ewing SK, Ensrud KE, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91:3908.

    Article  CAS  PubMed  Google Scholar 

  82. Isidori AM, Giannetta E, Greco EA, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol. 2005;63:280.

    Article  CAS  Google Scholar 

  83. Iso H, Kiyama M, Naito Y, Sato S, Kitamura A, Iida M, Konishi M, Sankai T, Shimamoto T, Komachi Y. The relation of body fat distribution and body mass with haemoglobin A1c, blood pressure and blood lipids in urban Japanese men. Int J Epidemiol. 20:88–94, 199.

    Google Scholar 

  84. Basaria S, Muller DC, Carducci MA, et al. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer. 2006;106:581.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M., Parekh, N. (2020). Male Age and Andropause. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics