Skip to main content

Environmental Factors

  • Chapter
  • First Online:
Male Infertility

Abstract

Male infertility currently has an increasing incidence globally while affecting 13–18% of males in their lifetime. Well-defined etiologies of male infertility are broad, with numerous underlying lifestyle and environmental risk factors established. Importantly, a significant proportion of male infertility remains idiopathic or unexplained. Lifestyle activities and environmental contaminant exposures contribute as significant risk factors for male infertility. There has been a significant increase in synthetic chemical production since the 1940s, increasingly contaminating the environment and negatively affecting ecosystems, including human health. These chemicals include various solvents, plastics, pesticides, and heavy metal contamination, which enter the water and food chain, negatively affecting human health with consequences for the next generation. Furthermore, there has been a significant increase in nonionizing radiation through cell phone use and Wi-Fi, which have rapidly contaminated the environment with negative effects on male fertility. Many of the environmental and lifestyle exposures to various environmental contaminants mediate increased oxidative stress in the male reproductive tract, with associated increased DNA damage and epigenetic modification. These mechanisms are associated with infertility and poor fertilization capacity of the oocyte, increased risk of pregnancy complications, and recurrent pregnancy loss, as well as have negative impact on the health and development of the offspring. This chapter reviews current information on chemicals associated with male fertility as well as potential mechanisms. This includes metals (arsenic, cadmium, lead, mercury, chromium, copper), endocrine-disrupting chemicals and xenoestrogens, pesticides, synthetic and occupation chemicals (benzene, carbon disulfide, glycol ether, methoxychlor, phthalates, bisphenol A), ionizing radiation (ultraviolet and gamma rays) and nonionizing radiation (cell phones and Wi-Fi), tobacco, and air pollution. The current evidence for male infertility association, as well as any known mechanisms, is presented for the environmental factors known to negatively affect male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21:411–26.

    Article  PubMed  Google Scholar 

  2. Iammarrone E, Balet R, Lower AM, Gillott C, Grudzinskas JG. Male infertility. Best Pract Res Clin Obstet Gynaecol. 2003;17:211–29.

    Article  CAS  PubMed  Google Scholar 

  3. Ma Y, He X, Qi K, Wang T, Qi Y, Cui L, et al. Effects of environmental contaminants on fertility and reproductive health. J Environ Sci (China). 2019;77:210–7.

    Article  Google Scholar 

  4. Lao M, Honig SC. Male infertility and subsequent risk of cancer development. J Men’s Health. 2015;11:19–28.

    Google Scholar 

  5. Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, et al. The toxicity data landscape for environmental chemicals. Environ Health Perspect. 2009;117:685–95.

    Article  CAS  PubMed  Google Scholar 

  6. Center for Disease Control (CDC). Second national report on human exposure to environmental chemicals. Atlanta: CDC; 2003.

    Google Scholar 

  7. Hull MG, Glazener CM, Kelly NJ, Conway DI, Foster PA, Hinton RA, et al. Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed). 1985;291:1693–7.

    Article  CAS  Google Scholar 

  8. Hauser R, Gaskins AJ, Souter I, Smith KW, Dodge LE, Ehrlich S, et al. Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: results from the EARTH study. Environ Health Perspect. 2016;113:175–9.

    Google Scholar 

  9. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci. 2011;123:305–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta. 2002;58:201–35.

    Article  CAS  PubMed  Google Scholar 

  11. Chayapong J, Madhyastha H, Madhyastha R, Nurrahmah QI, Nakajima Y, Choijookhuu N, et al. Arsenic trioxide induces ROS activity and DNA damage, leading to G0/G1 extension in skin fibroblasts through the ATM-ATR-associated Chk pathway. Environ Sci Pollut Res Int. 2017;24:5316–25.

    Article  CAS  PubMed  Google Scholar 

  12. Renu K, Madhyastha H, Madhyastha R, Maruyama M, Arunachlam S, Abilash VG. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology. Toxicol Lett. 2018;284:86–95.

    Article  CAS  PubMed  Google Scholar 

  13. Kim YJ, Kim JM. Arsenic toxicity in male reproduction and development. Dev Reprod. 2015;19:167–80.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Renu K, Madhyastha H, Madhyastha R, Maruyama M, Vinayagam S, Valsala GA. Review on molecular and biochemical insights of arsenic-mediated male reproductive toxicity. Life Sci. 2018;212:37–58.

    Article  CAS  PubMed  Google Scholar 

  15. Nordström S, Beckman L, Nordenson I. Occupational and environmental risks in and around a smelter in northern Sweden. V. Spontaneous abortion among female employees and decreased birth weight in their offspring. Hereditas. 1979;90:291–6.

    Article  PubMed  Google Scholar 

  16. Morakinyo AO, Achema PU, Adegoke OA. Effect of Zingiber officinale (ginger) on sodium arsenite-induced reproductive toxicity in male rats. Afr J Biomed Res. 2010;13:39–45.

    Google Scholar 

  17. Hsieh FI, Hwang TS, Hsieh YC, Lo HC, Su CT, Hsu HS, et al. Risk of erectile dysfunction induced by arsenic exposure through well water consumption in Taiwan. Environ Health Perspect. 2008;116:532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu W, Bao H, Liu F, Liu L, Zhu YG, She J, et al. Environmental exposure to arsenic may reduce human semen quality: associations derived from a Chinese cross-sectional study. Environ Health. 2012;11:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang YX, Wang P, Feng W, Liu C, Yang P, Chen YJ, et al. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. Environ Pollut. 2017;224:224–34.

    Article  CAS  PubMed  Google Scholar 

  20. Shen H, Xu W, Zhang J, Chen M, Martin FL, Xia Y, et al. Urinary metabolic biomarkers link oxidative stress indicators associated with general arsenic exposure to male infertility in a han chinese population. Environ Sci Technol. 2013;47:8843–51.

    CAS  PubMed  Google Scholar 

  21. Nogawa K, Yamada Y, Honda R, Ishizaki M, Tsuritani I, Kawano S, et al. The relationship between itai-itai disease among inhabitants of the Jinzu River basin and cadmium in rice. Toxicol Lett. 1983;17:263–6.

    Article  CAS  PubMed  Google Scholar 

  22. Wijesekara GU, Fernando DM, Wijerathna S, Bandara N. Environmental and occupational exposures as a cause of male infertility. Ceylon Med J. 2015;60:52–6.

    Article  CAS  PubMed  Google Scholar 

  23. Ranganathan P, Rao KA, Sudan JJ, Balasundaram S. Cadmium effects on sperm morphology and semenogelin with relates to increased ROS in infertile smokers: an in vitro and in silico approach. Reprod Biol. 2018;18:189–97.

    Article  PubMed  Google Scholar 

  24. Zhang Y, Li S, Li S. Relationship between cadmium content in semen and male infertility: a meta-analysis. Environ Sci Pollut Res Int. 2019;26:1947–53.

    Article  CAS  PubMed  Google Scholar 

  25. Pant N, Kumar G, Upadhyay AD, Gupta YK, Chaturvedi PK. Correlation between lead and cadmium concentration and semen quality. Andrologia. 2015;47:887–91.

    CAS  PubMed  Google Scholar 

  26. Xu DX, Shen HM, Zhu QX, Chua L, Wang QN, Chia SE, et al. The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res. 2003;534:155–63.

    Article  CAS  PubMed  Google Scholar 

  27. Benoff S, Jacob A, Hurley IR. Male infertility and environmental exposure to lead and cadmium. Hum Reprod Update. 2000;6:107–21.

    Article  CAS  PubMed  Google Scholar 

  28. Alexaki E, Samara C, Alexopoulos C, Tsafaris F, Smokovitis A. Detection of lead in blood, seminal plasma, and spermatozoa of bull. Effect in vitro of lead acetate on sperm motility. Bull Environ Contam Toxicol. 1990;45:824–8.

    Article  CAS  PubMed  Google Scholar 

  29. Noack-Füller G, De Beer C, Seibert H. Cadmium, lead, selenium, and zinc, in semen of occupationally unexposed men. Andrologia. 1993;25:7–12.

    Article  PubMed  Google Scholar 

  30. Telisman S, Colak B, Pizent A, Jurasovic J, Cvitkovic P. Reproductive toxicity of low-level lead exposure in men. Environ Res. 2007;105:256–66.

    Article  CAS  PubMed  Google Scholar 

  31. Gandhi J, Hernandez RJ, Chen A, Smith NL, Sheynkin YR, Joshi G, et al. Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote. 2017;25:103–10.

    Article  CAS  PubMed  Google Scholar 

  32. Bataineh H, Al-Hamood MH, Elbetieha A. Effect of long-term ingestion of chromium compounds on aggression, sex behavior and fertility in adult male rat. Drug Chem Toxicol. 1997;20:133–49.

    Article  CAS  PubMed  Google Scholar 

  33. Sheiner EK, Sheiner E, Hammel RD, Potashnik G, Carel R. Effect of occupational exposures on male fertility: literature review. Ind Health. 2003;41:55–62.

    Article  CAS  PubMed  Google Scholar 

  34. Shiau CY, Wang JD, Chen PC. Decreased fecundity among male lead workers. Occup Environ Med. 2004;61:915–23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Benoff S, Centola GM, Millan C, Napolitano B, Marmar JL, Hurley IR. Increased seminal plasma lead levels adversely affect the fertility potential of sperm in IVF. Hum Reprod. 2003;18:374–83.

    Article  CAS  PubMed  Google Scholar 

  36. Quintanilla-Vega B, Hoover D, Bal W, Silbergeld EK, Waalkes MP, Anderson LD. Lead effects on protamine-DNA binding. Am J Ind Med. 2000;38:324–9.

    Article  CAS  PubMed  Google Scholar 

  37. Choy CM, Lam CW, Cheung LT, Briton-Jones CM, Cheung LP, Haines CJ. Infertility, blood mercury concentrations and dietary seafood consumption: a case-control study. BJOG. 2002;109:1121–5.

    CAS  PubMed  Google Scholar 

  38. Podzimek S, Prochazkova J, Bultasova L, Bartova J, Ulcova-Gallova Z, Mrklas L, et al. Sensitization to inorganic mercury could be a risk factor for infertility. Neuro Endocrinol Lett. 2005;26:277–82.

    CAS  PubMed  Google Scholar 

  39. Georgescu B, Georgescu C, Daraban S, Bouaru A, Pascalau S. Heavy metals acting as endocrine disrupters. Anim Sci Biotechnol. 2011;44:89–93.

    Google Scholar 

  40. Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233:R109–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henriques MC, Loureiro S, Fardilha M, Herdeiro MT. Exposure to mercury and human reproductive health: a systematic review. Reprod Toxicol. 2019;85:93–103.

    Article  CAS  PubMed  Google Scholar 

  42. McGregor AJ, Mason HJ. Occupational mercury vapour exposure and testicular, pituitary and thyroid endocrine function. Hum Exp Toxicol. 1991;10:199–203.

    Article  CAS  PubMed  Google Scholar 

  43. Barregard L, Lindstedt G, Schütz A, Sällsten G. Endocrine function in mercury exposed chloralkali workers. Occup Environ Med. 1994;51:536–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mocevic E, Specht IO, Marott JL, Giwercman A, Jönsson BA, Toft G, et al. Environmental mercury exposure, semen quality and reproductive hormones in Greenlandic Inuit and European men: a cross-sectional study. Asian J Androl. 2013;15:97–104.

    Article  CAS  PubMed  Google Scholar 

  45. Lenters V, Portengen L, Smit LA, Jönsson BA, Giwercman A, Rylander L, et al. Phthalates, perfluoroalkyl acids, metals and organochlorines and reproductive function: a multipollutant assessment in Greenlandic, polish and Ukrainian men. Occup Environ Med. 2015;72:385–93.

    Article  PubMed  Google Scholar 

  46. Corradi PF, Corradi RB, Greene LW. Physiology of the Hypothalamic Pituitary Gonadal Axis in the Male. Urol Clin North Am. 2016;43:151–62.

    Article  PubMed  Google Scholar 

  47. Zhou Y, Fu XM, He DL, Zou XM, Wu CQ, Guo WZ, et al. Evaluation of urinary metal concentrations and sperm DNA damage in infertile men from an infertility clinic. Environ Toxicol Pharmacol. 2016;45:68–73.

    Article  CAS  PubMed  Google Scholar 

  48. Flanders RA. Mercury in dental amalgam – a public health concern? J Public Health Dent. 1992;52:303–11.

    Article  CAS  PubMed  Google Scholar 

  49. Göhring TN, Schicht OO, Imfeld T. Is amalgam a health hazard? Ther Umsch. 2008;65:103–10.

    Article  PubMed  Google Scholar 

  50. Weiner JA, Nylander M, Berglund F. Does mercury from amalgam restorations constitute a health hazard? Sci Total Environ. 1990;99:1–22.

    Article  CAS  PubMed  Google Scholar 

  51. Mutter J, Naumann J, Sadaghiani C, Walach H, Drasch G. Amalgam studies: disregarding basic principles of mercury toxicity. Int J Hyg Environ Health. 2004;207:391–7.

    Article  CAS  PubMed  Google Scholar 

  52. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001.

    Google Scholar 

  53. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for chromium. EFSA J. 2014;12:3845.

    Article  CAS  Google Scholar 

  54. Aruldhas MM, Subramanian S, Sekar P, Vengatesh G, Chandrahasan G, Govindarajulu P, et al. Chronic chromium exposure-induced changes in testicular histoarchitecture are associated with oxidative stress: study in a non-human primate (Macaca radiata Geoffroy). Hum Reprod. 2005;20:2801–13.

    Article  CAS  PubMed  Google Scholar 

  55. Das J, Kang MH, Kim E, Kwon DN, Choi YJ, Kim JH. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance. Sci Rep. 2015;5:13921.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kumar S, Sathwara NG, Gautam AK, Agarwal K, Shah B, Kulkarni PK, Patel K, et al. Semen quality of industrial workers occupationally exposed to chromium. J Occup Health. 2005;47:424–30.

    Article  CAS  PubMed  Google Scholar 

  57. Li H, Chen Q, Li S, Yao W, Li L, Shi X, et al. Effect of Cr(VI) exposure on sperm quality: human and animal studies. Ann Occup Hyg. 2001;45:505–11.

    Article  CAS  PubMed  Google Scholar 

  58. Aydemir B, Kiziler AR, Onaran I, Alici B, Ozkara H, Akyolcu MC. Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol Trace Elem Res. 2006;112:193–203.

    Article  CAS  PubMed  Google Scholar 

  59. Jockenhövel F, Bals-Pratsch M, Bertram HP, Nieschlag E. Seminal lead and copper in fertile and infertile men. Andrologia. 1990;22:503–11.

    Article  PubMed  Google Scholar 

  60. Ogorek M, Gasior L, Pierzchała O, Daszkiewicz R, Lenartowicz M. Role of copper in the process of spermatogenesis. Postepy Hig Med Dosw (Online). 2017;71:663–83.

    Article  Google Scholar 

  61. Sidorkiewicz I, Zaręba K, Wołczyński S, Czerniecki J. Endocrine-disrupting chemicals-mechanisms of action on male reproductive system. Toxicol Ind Health. 2017;33:601–9.

    Article  CAS  PubMed  Google Scholar 

  62. Den Hond E, Tournaye H, De Sutter P, Ombelet W, Baeyens W, Covaci A, et al. Human exposure to endocrine disrupting chemicals and fertility: a case-control study in male subfertility patients. Environ Int. 2015;84:154–60.

    Article  CAS  Google Scholar 

  63. Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11:66.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Irvine DS. Declining sperm quality: a review of facts and hypotheses. Baillieres Clin Obstet Gynaecol. 1997;11:655–71.

    Article  CAS  PubMed  Google Scholar 

  65. Gabrielsen JS, Tanrikut C. Chronic exposures and male fertility: the impacts of environment, diet, and drug use on spermatogenesis. Andrology. 2016;4:648–61.

    Article  CAS  PubMed  Google Scholar 

  66. Chiu YH, Gaskins AJ, Williams PL, Mendiola J, Jorgensen N, Levine H, et al. Intake of fruits and vegetables with low-to-moderate pesticide residues is positively associated with semen-quality parameters among young healthy men. J Nutr. 2016;146:1084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Skakkebæk NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.

    Article  PubMed  Google Scholar 

  68. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8:e55387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singleton DW, Sohaib AK. Xenosestrogen exposure and mechanisms of endocrine disruption. Front Biosci. 2003;8:110–8.

    Article  Google Scholar 

  70. Rozati R, Reddy PP, Reddanna P, Mujtaba R. Role of environmental estrogens in the deterioration of male factor fertility. Fertil Steril. 2002;78:1187–94.

    Article  PubMed  Google Scholar 

  71. Hauser R. The environment and male fertility: recent research on emerging chemicals and semen quality. Semin Reprod Med. 2006;24:156–67.

    Article  CAS  PubMed  Google Scholar 

  72. Dallinga JW, Moonen EJ, Dumoulin JC, Evers JL, Geraedts JP, Kleinjans JC. Decreased human semen quality and organochlorine compounds in blood. Hum Reprod. 2002;17:1973–9.

    Article  CAS  PubMed  Google Scholar 

  73. Toft G, Rignell-Hydbom A, Tyrkiel E, Shvets M, Giwercman A, Lindh CH, et al. Semen quality and exposure to persistent organochlorine pollutants. Epidemiology. 2006;17:450–8.

    Article  PubMed  Google Scholar 

  74. Toft G. Persistent organochlorine pollutants and human reproductive health. Dan Med J. 2014;61:B4967.

    PubMed  Google Scholar 

  75. Bonde JP, Toft G, Rylander L, Rignell-Hydbom A, Giwercman A, Spano M, et al. Fertility and markers of male reproductive function in Inuit and European populations spanning large contrasts in blood levels of persistent organochlorines. Environ Health Perspect. 2008;116:269–77.

    Article  CAS  PubMed  Google Scholar 

  76. Meeker JD, Hauser R. Exposure to polychlorinated biphenyls (PCBs) and male reproduction. Syst Biol Reprod Med. 2010;56:122–31.

    Article  CAS  PubMed  Google Scholar 

  77. Jurewicz J, Hanke W, Radwan M, Bonde JP. Environmental factors and semen quality. Int J Occup Med Environ Health. 2009;22:305–29.

    PubMed  Google Scholar 

  78. Magnusdottir EV, Thorsteinsson T, Thorsteinsdottir S, Heimisdottir M, Olafsdottir K. Persistent organochlorines, sedentary occupation, obesity and human male subfertility. Hum Reprod. 2005;20:208–15.

    Article  PubMed  Google Scholar 

  79. West MC, Anderson L, McClure N, Lewis SE. Dietary oestrogens and male fertility potential. Hum Fertil (Camb). 2005;8:197–207.

    Article  CAS  Google Scholar 

  80. Snoj T, Majdič G. Mechanisms in endocrinology: estrogens in consumer milk: is there a risk to human reproductive health? Eur J Endocrinol. 2018;179:R275–86.

    Article  CAS  PubMed  Google Scholar 

  81. Fan W, Yanase T, Morinaga H, Gondo S, Okabe T, Nomura M, et al. Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans. Environ Health Perspect. 2007;115:720–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci U S A. 2010;107:4612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hayes TB, Anderson LL, Beasley VR, de Solla SR, Iguchi T, Ingraham H, et al. Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J Steroid Biochem Mol Biol. 2011;127:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Swan SH. Semen quality in fertile US men in relation to geographical area and pesticide exposure. Int J Androl. 2006;29:62–8.

    Article  PubMed  Google Scholar 

  85. Baranski B. Effects of the workplace on fertility and related reproductive outcomes. Environ Health Perspect. 1993;101(Suppl 2):81–90.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Meeker JD, Singh NP, Ryan L, Duty SM, Barr DB, Herrick RF, et al. Urinary levels of insecticide metabolites and DNA damage in human sperm. Hum Reprod. 2004;19:2573–80.

    Article  CAS  PubMed  Google Scholar 

  87. Meeker JD, Ravi SR, Barr DB, Hauser R. Circulating estradiol in men is inversely related to urinary metabolites of nonpersistent insecticides. Reprod Toxicol. 2008;25:184–91.

    Article  CAS  PubMed  Google Scholar 

  88. Fattahi E, Jorsaraei SG, Gardaneh M. The effect of Carbaryl on the pituitary-gonad axis in male rats. Iran J Reprod Med. 2012;10:419–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dziewirska E, Radwan M, Wielgomas B, Klimowska A, Radwan P, Kaluzny P, et al. Human semen quality, sperm DNA damage, and the level of urinary concentrations of 1N and TCPY, the biomarkers of nonpersistent insecticides. Am J Mens Health. 2019;13(1):1557988318816598. https://doi.org/10.1177/1557988318816598. Epub 2018 Dec 10

    Article  PubMed  Google Scholar 

  90. Cannon SB, Veazey JM Jr, Jackson RS, Burse VW, Hayes C, Straub WE, et al. Epidemic kepone poisoning in chemical workers. Am J Epidemiol. 1978;107:529–37.

    Article  CAS  PubMed  Google Scholar 

  91. Guzelian PS. Chlordecone poisoning: a case study in approaches for detoxification of humans exposed to environmental chemicals. Drug Metab Rev. 1982;13:663–79.

    Article  CAS  PubMed  Google Scholar 

  92. Bretveld R, Brouwers M, Ebisch I, Roeleveld N. Influence of pesticides on male fertility. Scand J Work Environ Health. 2007;33:13–28.

    Article  CAS  PubMed  Google Scholar 

  93. Yang L, Zhou B, Zha J, Wang Z. Mechanistic study of chlordecone-induced endocrine disruption: based on an adverse outcome pathway network. Chemosphere. 2016;161:372–81.

    Article  CAS  PubMed  Google Scholar 

  94. Reuber MD. The carcinogenicity kepone. J Environ Pathol Toxicol. 1979;2:671–86.

    CAS  PubMed  Google Scholar 

  95. Boucher O, Simard MN, Muckle G, Rouget F, Kadhel P, Bataille H, et al. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology. 2013;35:162–8.

    Article  CAS  PubMed  Google Scholar 

  96. Mallick S, Blanchet P, Multigner L. Prostate cancer incidence in Guadeloupe, a French Caribbean archipelago. Eur Urol. 2005;47:769–72.

    Article  PubMed  Google Scholar 

  97. Emeville E, Giusti A, Coumoul X, Thome JP, Blanchet P, Multigner L. Associations of plasma concentrations of dichlorodiphenyldichloroethylene and polychlorinated biphenyls with prostate cancer: a case-control study in Guadeloupe (French West Indies). Environ Health Perspect. 2015;123:317–23.

    Article  CAS  PubMed  Google Scholar 

  98. Beychok MR. A data base for dioxin and furan emissions from refuse incinerators. Atmos Environ. 1987;21:29–36.

    Article  CAS  Google Scholar 

  99. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:E1–E150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. del Rio GI, Marshall T, Tsai P, Shao YS, Guo YL. Number of boys born to men exposed to polychlorinated biphenyls. Lancet. 2002;360:143–4.

    Article  Google Scholar 

  101. Terrell ML, Hartnett KP, Marcus M. Can environmental or occupational hazards alter the sex ratio at birth? A systematic review. Emerg Health Threats J. 2011;4:7109.

    Article  PubMed  Google Scholar 

  102. Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: translating lessons from murine models. Reprod Toxicol. 2017;68:59–71.

    Article  CAS  PubMed  Google Scholar 

  103. Eskenazi B, Warner M, Brambilla P, Signorini S, Ames J, Mocarelli P. The Seveso accident: a look at 40 years of health research and beyond. Environ Int. 2018;121(Pt 1):71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ratcliffe JM, Schrader SM, Steenland K, Clapp DE, Turner T, Hornung RW. Semen quality in papaya workers with long term exposure to ethylene dibromide. Br J Ind Med. 1987;44:317–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Schrader SM, Ratcliffe JM, Turner TW, Hornung RW. The use of new field methods of semen analysis in the study of occupational hazards to reproduction: the example of ethylene dibromide. J Occup Med. 1987;29:963–6.

    CAS  PubMed  Google Scholar 

  106. Jirsova S. The effect of polychlorinated biphenyls and organochlorinated pesticides on human reproduction. Ceska Gynekol. 2018;83:380–4.

    CAS  PubMed  Google Scholar 

  107. Vitku J, Heracek J, Sosvorova L, Hampl R, Chlupacova T, Hill M, et al. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic. Environ Int. 2016;89–90:166–73.

    Article  PubMed  CAS  Google Scholar 

  108. Jiang LG, Cheng LY, Kong SH, Yang Y, Shen YJ, Chen C, et al. Toxic effects of polychlorinated biphenyls (Aroclor 1254) on human sperm motility. Asian J Androl. 2017;19:561–6.

    Article  CAS  PubMed  Google Scholar 

  109. Multigner L, Ben Brik E, Arnaud I, Haguenoer JM, Jouannet P, Auger J, et al. Glycol ethers and semen quality: a cross-sectional study among male workers in the Paris municipality. Occup Environ Med. 2007;64:467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hejmej A, Kotula-Balak M, Bilinska B. Antiandrogenic and estrogenic compounds: effect on development and function of male reproductive system. In: Abduljabbar H, editor. Steroids – clinical aspect. Rijeka: InTech; 2011. p. 51–82.

    Google Scholar 

  111. Martinovic D, Blake LS, Durhan EJ, Greene KJ, Kahl MD, Jensen KM, et al. Reproductive toxicity of vinclozolin in the fathead minnow: confirming an anti-androgenic mode of action. Environ Toxicol Chem. 2008;27:478–88.

    Article  CAS  PubMed  Google Scholar 

  112. Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One. 2010;5:pii:e13100.

    Article  CAS  Google Scholar 

  113. Nilsson E, King SE, McBirney M, Kubsad D, Pappalardo M, Beck D, et al. Vinclozolin induced epigenetic transgenerational inheritance of pathologies and sperm epimutation biomarkers for specific diseases. PLoS One. 2018;13:e0202662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bonde JP, Giwercman A, Ernst E. Identifying environmental risk to male reproductive function by occupational sperm studies: logistics and design options. Occup Environ Med. 1996;53:511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Veeramachaneni DN. Impact of environmental pollutants on the male: effects on germ cell differentiation. Anim Reprod Sci. 2008;105:144–57.

    Article  CAS  PubMed  Google Scholar 

  116. Bonde JP. Occupational causes of male infertility. Curr Opin Endocrinol Diabetes Obes. 2013;20:234–9.

    Article  PubMed  Google Scholar 

  117. Rosati MV, Sancini A, Tomei F, Sacco C, Traversini V, De Vita A, et al. Correlation between benzene and testosterone in workers exposed to urban pollution. Clin Ter. 2017;168:e380–7.

    CAS  PubMed  Google Scholar 

  118. Katukam V, Kulakarni M, Syed R, Alharbi K, Naik J. Effect of benzene exposure on fertility of male workers employed in bulk drug industries. Genet Test Mol Biomarkers. 2012;16:592–7.

    Article  CAS  PubMed  Google Scholar 

  119. Guo Y, Ji J, Wang W, Dong Y, Zhang Z, Zhou Y, et al. Role of endoplasmic reticulum apoptotic pathway in testicular Sertoli cells injury induced by carbon disulfide. Chemosphere. 2015;132:70–8.

    Article  CAS  PubMed  Google Scholar 

  120. Balabaeva L, Davidkova E, Kurchatova G. Effect of long-term exposure to carbon disulfide on various biochemical indices in albino rats. Probl Khig. 1982;7:101–8.

    CAS  PubMed  Google Scholar 

  121. Tepe SJ, Zenick H. The effects of carbon disulphide on the reproductive system of the male rat. Toxicology. 1984;32:47–56.

    Article  CAS  PubMed  Google Scholar 

  122. Gondzik M. The histologic and histochemical pattern of the tests in rats subjected to the action of carbon disulphide. Patol Pol. 1970;21:129–36.

    CAS  PubMed  Google Scholar 

  123. Wess JA. Reproductive toxicity of ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and their acetates. Scand J Work Environ Health. 1992;18(Suppl 2):43–5.

    CAS  PubMed  Google Scholar 

  124. Hardin BD. Reproductive toxicity of the glycol ethers. Toxicology. 1983;27:91–102.

    Article  CAS  PubMed  Google Scholar 

  125. Cherry N, Moore H, McNamee R, Pacey A, Burgess G, Clyma JA, et al. Occupation and male infertility: glycol ethers and other exposures. Occup Environ Med. 2008;65:708–14.

    Article  CAS  PubMed  Google Scholar 

  126. Cherry N, Povey AC, McNamee R, Moore H, Baillie H, Clyma JA, et al. Occupation exposures and sperm morphology: a case-referent analysis of a multi-centre study. Occup Environ Med. 2014;71:598–604.

    Article  PubMed  Google Scholar 

  127. Cherry NM, Labreche F, Collins J, Tulandi T. Occupational exposure to solvents and male infertility. Occup Environ Med. 2001;58:635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Welsch F. The mechanism of ethylene glycol ether reproductive and developmental toxicity and evidence for adverse effects in humans. Toxicol Lett. 2005;156:13–28.

    Article  CAS  PubMed  Google Scholar 

  129. Koizumi A, Hamade N, Arai M, Takatoku M, Yasuhiko W, Tsukada M, et al. Electrophoresis of phosphoglycerate kinase-2 to determine testicular damage induced by ethylene glycol monomethyl ether and sterility associated with chromosomal abnormality. Arch Toxicol. 1990;64:181–7.

    Article  CAS  PubMed  Google Scholar 

  130. Oudiz DJ, Walsh K, Wiley LM. Ethylene glycol monomethyl ether (EGME) exposure of male mice produces a decrease in cell proliferation of preimplantation embryos. Reprod Toxicol. 1993;7:101–9.

    Article  CAS  PubMed  Google Scholar 

  131. Liu S, Li C, Wang Y, Hong T, Song T, Li L, et al. In utero methoxychlor exposure increases rat fetal Leydig cell number but inhibits its function. Toxicology. 2016;370:31–40.

    Article  CAS  PubMed  Google Scholar 

  132. Aoyama H, Chapin RE. Reproductive toxicities of methoxychlor based on estrogenic properties of the compound and its estrogenic metabolite, hydroxyphenyltrichloroethane. Vitam Horm. 2014;94:193–210.

    Article  CAS  PubMed  Google Scholar 

  133. Paoloni-Giacobino A. Epigenetic effects of methoxychlor and vinclozolin on male gametes. Vitam Horm. 2014;94:211–27.

    Article  CAS  PubMed  Google Scholar 

  134. Stouder C, Paoloni-Giacobino A. Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction. 2011;141:207–16.

    Article  CAS  PubMed  Google Scholar 

  135. Du X, Zhang H, Liu Y, Yu W, Huang C, Li X. Perinatal exposure to low-dose methoxychlor impairs testicular development in C57BL/6 mice. PLoS One. 2014;9:e103016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Chang WH, Li SS, Wu MH, Pan HA, Lee CC. Phthalates might interfere with testicular function by reducing testosterone and insulin-like factor 3 levels. Hum Reprod. 2015;30:2658–70.

    Article  CAS  PubMed  Google Scholar 

  137. Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, et al. Phthalate exposure and human semen parameters. Epidemiology. 2003;14:269–77.

    PubMed  Google Scholar 

  138. Jurewicz J, Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int J Occup Med Environ Health. 2011;24:115–41.

    Article  PubMed  Google Scholar 

  139. Foster PM. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29:140–7; discussion 181–5

    Article  CAS  PubMed  Google Scholar 

  140. Dobrzyńska MM. Phthalates – widespread occurrence and the effect on male gametes. Part 2. The effects of phthalates on male gametes and on the offspring. Rocz Panstw Zakl Hig. 2016;67:209–21.

    PubMed  Google Scholar 

  141. Andrade AJ, Grande SW, Talsness CE, Gericke C, Grote K, Golombiewski A, et al. A dose response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult male offspring rats. Toxicology. 2006;228:85–97.

    Article  CAS  PubMed  Google Scholar 

  142. Andrade AJ, Grande SW, Talsness CE, Grote K, Golombiewski A, Sterner-Kock A, et al. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): effects on androgenic status, developmental landmarks and testicular histology in male offspring rats. Toxicology. 2006;225:64–74.

    Article  CAS  PubMed  Google Scholar 

  143. Christiansen S, Boberg J, Axelstad M, Dalgaard M, Vinggaard AM, Metzdorff SB, et al. Low-dose perinatal exposure to di(2-ethylhexyl) phthalate induces anti-androgenic effects in male rats. Reprod Toxicol. 2010;30:313–21.

    Article  CAS  PubMed  Google Scholar 

  144. Buñay J, Larriba E, Patiño-Garcia D, Urriola-Muñoz P, Moreno RD, Del Mazo J. Combined proteomic and miRNome analyses of mouse testis exposed to an endocrine disruptors chemicals mixture reveals altered toxicological pathways involved in male infertility. Mol Hum Reprod. 2019; https://doi.org/10.1093/molehr/gaz003.

  145. Wang YX, Zeng Q, Sun Y, You L, Wang P, Li M, et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: a cross-sectional study in China. Environ Res. 2016;150:557–65.

    Article  CAS  PubMed  Google Scholar 

  146. Wirth JJ, Rossano MG, Potter R, Puscheck E, Daly DC, Paneth N, et al. A pilot study associating urinary concentrations of phthalate metabolites and semen quality. Syst Biol Reprod Med. 2008;54:143–54.

    Article  CAS  PubMed  Google Scholar 

  147. Pan Y, Jing J, Dong F, Yao Q, Zhang W, Zhang H, et al. Association between phthalate metabolites and biomarkers of reproductive function in 1066 Chinese men of reproductive age. J Hazard Mater. 2015;300:729–36.

    Article  CAS  PubMed  Google Scholar 

  148. Al-Saleh I, Coskun S, Al-Doush I, Al-Rajudi T, Abduljabbar M, Al-Rouqi R, et al. The relationships between urinary phthalate metabolites, reproductive hormones and semen parameters in men attending in vitro fertilization clinic. Sci Total Environ. 2019;658:982–95.

    Article  CAS  PubMed  Google Scholar 

  149. Wu H, Estill MS, Shershebnev A, Suvorov A, Krawetz SA, Whitcomb BW, et al. Preconception urinary phthalate concentrations and sperm DNA methylation profiles among men undergoing IVF treatment: a cross-sectional study. Hum Reprod. 2017;32:2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang P, Gong YJ, Wang YX, Liang XX, Liu Q, Liu C, et al. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality. Environ Pollut. 2017;231(Pt 1):694–702.

    Article  CAS  PubMed  Google Scholar 

  151. Liu X, Miao M, Zhou Z, Gao E, Chen J, Wang J, et al. Exposure to bisphenol-A and reproductive hormones among male adults. Environ Toxicol Pharmacol. 2015;39:934–41.

    Article  PubMed  CAS  Google Scholar 

  152. Omran GA, Gaber HD, Mostafa NAM, Abdel-Gaber RM, Salah EA. Potential hazards of bisphenol A exposure to semen quality and sperm DNA integrity among infertile men. Reprod Toxicol. 2018;81:188–95.

    Article  CAS  PubMed  Google Scholar 

  153. Rahman MS, Kwon WS, Lee JS, Yoon SJ, Ryu BY, Pang MG. Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci Rep. 2015;5:9169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Wisniewski P, Romano RM, Kizys MM, Oliveira KC, Kasamatsu T, Giannocco G, et al. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicology. 2015;329:1–9.

    Article  CAS  PubMed  Google Scholar 

  155. Goldstein KM, Seyler DE, Durand P, Perrard MH, Baker TK. Use of a rat ex-vivo testis culture method to assess toxicity of select known male reproductive toxicants. Reprod Toxicol. 2016;60:92–103.

    Article  CAS  PubMed  Google Scholar 

  156. Matuszczak E, Komarowska MD, Debek W, Hermanowicz A. The impact of bisphenol A on fertility, reproductive system, and development: a review of the literature. Int J Endocrinol. 2019;2019:4068717. https://doi.org/10.1155/2019/4068717. eCollection 2019

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rahimi S, Martel J, Karahan G, Angle C, Behan NA, Chan D, et al. Moderate maternal folic acid supplementation ameliorates adverse embryonic and epigenetic outcomes associated with assisted reproduction in a mouse model. Hum Reprod. 2019;34:851–62.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Surén P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. 2013;309:570–7.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Juzeniene A, Thu Tam TT, Iani V, Moan J. 5-Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers. Free Radic Biol Med. 2009;47:1199–204.

    Article  CAS  PubMed  Google Scholar 

  160. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100:1180–6.

    Article  CAS  PubMed  Google Scholar 

  161. Hahn EW, Feingold SM, Nisce L. Aspermia and recovery of spermatogenesis in cancer patients following incidental gonadal irradiation during treatment: a progress report. Radiology. 1976;119:223–5.

    Article  CAS  PubMed  Google Scholar 

  162. Ogilvy-Stuart AL, Shalet SM. Effect of radiation on the human reproductive system. Environ Health Perspect. 1993;101(Suppl 2):109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kesari KK, Kumar S, Behari J. Mobile phone usage and male infertility in Wistar rats. Indian J Exp Biol. 2010;48:987–92.

    CAS  PubMed  Google Scholar 

  164. McGill JJ, Agarwal A. The impact of cell phone, laptop computer, and microwave oven usage on male fertility. In: du Plessis SS, Agarwal A, Sabanegh ES, editors. Male infertility: a complete guide to lifestyle and environmental factors. New York: Springer; 2014. p. 161–77.

    Google Scholar 

  165. Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother. 2008;62:104–9.

    Article  CAS  PubMed  Google Scholar 

  166. Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 2011;12:624–6.

    Article  PubMed  Google Scholar 

  167. International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74:494–522.

    Google Scholar 

  168. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89:124–8.

    Article  PubMed  Google Scholar 

  169. Agarwal A, Singh A, Hamada A, Kesari K. Cell phones and male infertility: a review of recent innovations in technology and consequences. Int Braz J Urol. 2011;37:432–54.

    Article  PubMed  Google Scholar 

  170. Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92:1318–25.

    Article  PubMed  Google Scholar 

  171. Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int. 2014;70:106–12.

    Article  PubMed  Google Scholar 

  172. Kumar S, Kesari KK, Behari J. The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo). 2011;66:1237–45.

    Article  Google Scholar 

  173. Kumar S, Nirala JP, Behari J, Paulraj R. Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. Indian J Exp Biol. 2014;52:890–7.

    PubMed  Google Scholar 

  174. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4:e6446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Meena R, Kumari K, Kumar J, Rajamani P, Verma HN, Kesari KK. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn Biol Med. 2014;33:81–91.

    Article  CAS  PubMed  Google Scholar 

  176. Oni OM, Amuda DB, Gilbert CE. Effects of radiofrequency radiation from WiFi devices on human ejaculated semen. Int J Res Rev Appl Sci. 2011;9:292–4.

    CAS  Google Scholar 

  177. Mahmoudi R, Mortazavi SMJ, Safari S, Nikseresht M, Mozdarani H, Jafari M, et al. Effects of microwave electromagnetic radiations emitted from common Wi-fi routers on rats’ sperm count and motility. Int J Radiat Res. 2015;13:363–8.

    Google Scholar 

  178. Kamali K, Atarod M, Sarhadi S, Nikbakht J, Emami M, Maghsoudi R, et al. Effects of electromagnetic waves emitted from 3G+wi-fi modems on human semen analysis. Urologia. 2017;84:209–14.

    Article  PubMed  Google Scholar 

  179. Larik RSA, Mallah GA, Talpur MMA, Suhag AK, Larik FA. Effects of wireless devices on human body. J Comput Sci Syst Biol. 2016;9:119–24.

    Google Scholar 

  180. Pfeifer S, Fritz M, Goldberg J, McClure RD, Thomas M, Widra E, et al. Smoking and infertility: a committee opinion. Fertil Steril. 2012;98:1400–6.

    Article  Google Scholar 

  181. Borgerding M, Klus H. Analysis of complex mixtures – cigarette smoke. Exp Toxicol Pathol. 2005;57(Suppl 1):43–73.

    Article  CAS  PubMed  Google Scholar 

  182. Barazani Y, Katz BF, Nagler HM, Stember DS. Lifestyle, environment, and male reproductive health. Urol Clin North Am. 2014;41:55–66.

    Article  PubMed  Google Scholar 

  183. Dai JB, Wang ZX, Qiao ZD. The hazardous effects of tobacco smoking on male fertility. Asian J Androl. 2015;17:954–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sharma R, Harlev A, Agarwal A, Esteves SC. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization Laboratory methods for the examination of human semen. Eur Urol. 2016;70:635–45.

    Article  PubMed  Google Scholar 

  185. Li Y, Lin H, Li Y, Cao J. Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses. Fertil Steril. 2011;95:116–23.

    Article  PubMed  Google Scholar 

  186. Calogero A, Polosa R, Perdichizzi A, Guarino F, La Vignera S, Scarfia A, et al. Cigarette smoke extract immobilizes human spermatozoa and induces sperm apoptosis. Reprod Biomed Online. 2009;19:564–71.

    Article  PubMed  Google Scholar 

  187. Shrivastava V, Marmor H, Chernyak S, Goldstein M, Feliciano M, Vigodner M. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins. Reprod Toxicol. 2014;43:125–9.

    Article  CAS  PubMed  Google Scholar 

  188. Mostafa RM, Nasrallah YS, Hassan MM, Farrag AF, Majzoub A, Agarwal A. The effect of cigarette smoking on human seminal parameters, sperm chromatin structure and condensation. Andrologia. 2018;50 https://doi.org/10.1111/and.12910.

  189. Ghaffari MA, Rostami M. The effect of cigarette smoking on human sperm creatine kinase activity: as an ATP buffering system in sperm. Int J Fertil Steril. 2013;6:258–65.

    PubMed  PubMed Central  Google Scholar 

  190. Harte CB, Meston CM. Association between smoking cessation and sexual health in men. BJU Int. 2012;109:888–96.

    Article  PubMed  Google Scholar 

  191. Oyeyipo IP, Raji Y, Emikpe BO, Bolarinwa AF. Effects of nicotine on sperm characteristics and fertility profile in adult male rats: a possible role of cessation. J Reprod Infertil. 2011;12:201–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lafuente R, García-Blàquez N, Jacquemin B, Checa MA. Outdoor air pollution and sperm quality. Fertil Steril. 2016;106:880–96.

    Article  CAS  PubMed  Google Scholar 

  193. Jurewicz J, Dziewirska E, Radwan M, Hanke W. Air pollution from natural and anthropic sources and male fertility. Reprod Biol Endocrinol. 2018;16:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fathi Najafi T, Latifnejad Roudsari R, Namvar F, Ghavami Ghanbarabadi V, Hadizadeh Talasaz Z, Esmaeli M. Air pollution and quality of sperm: a meta-analysis. Iran Red Crescent Med J. 2015;17:e26930.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod. 2005;20:2776–83.

    Article  CAS  PubMed  Google Scholar 

  196. Selevan SG, Borkovec L, Slott VL, Zudova Z, Rubes J, Evenson DP, et al. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ Health Perspect. 2000;108:887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Calogero AE, La Vignera S, Condorelli RA, Perdichizzi A, Valenti D, Asero P, et al. Environmental car exhaust pollution damages human sperm chromatin and DNA. J Endocrinol Investig. 2011;34:139–43.

    Article  Google Scholar 

  198. De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, et al. Traffic pollutants affect fertility in men. Hum Reprod. 2003;18:1055–61.

    Article  PubMed  CAS  Google Scholar 

  199. Hansen C, Luben T, Sacks J, Olshan A, Jeffay S, Strader L, et al. The effect of ambient air pollution on sperm quality. Environ Health Perspect. 2009;118:203–9.

    Article  PubMed Central  CAS  Google Scholar 

  200. Radwan M, Jurewicz J, Polanska K, Sobala W, Radwan P, Bochenek M, et al. Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones? Ann Hum Biol. 2016;43:50–6.

    Article  PubMed  Google Scholar 

  201. Ji G, Gu A, Zhou Y, Shi X, Xia Y, Long Y, et al. Interactions between exposure to environmental polycyclic aromatic hydrocarbons and DNA repair gene polymorphisms on bulky DNA adducts in human sperm. PLoS One. 2010;5:pii: e13145.

    Article  CAS  Google Scholar 

  202. Kubincová P, Sychrová E, Raška J, Basu A, Yawer A, Dydowiczová A, et al. PAHs and endocrine disruption: role of testicular gap junctional intercellular communication and connexins. Toxicol Sci. 2019; https://doi.org/10.1093/toxsci/kfz023. [Epub ahead of print].

  203. Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol. 2005;206:73–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Leisegang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leisegang, K., Henkel, R. (2020). Environmental Factors. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics