Skip to main content

Physiological Role of ROS in Sperm Function

  • Chapter
  • First Online:
Male Infertility

Abstract

Oxygen, in its diatomic form, is essentially reduced to sustain cellular respiration and survival. This reduction leads to generation of highly reactive oxygen metabolites or reactive oxygen species (ROS), which influence various cellular functions. Endogenous ROS generation in male reproductive tissue and its seminal concentration possess both physiological and pathological significance. Seminal fluid contains several cells including immature germ cells, macrophages, and leukocytes, which may generate ROS to varying concentrations. At normal physiological levels, ROS are crucial for vital reproductive functions such as spermatogenesis, to sustain sperm viability and to mediate maturation, hyperactivation and capacitation, and sperm motility as well as acrosome reaction (AR). Excess ROS are quenched by orchestrated actions of antioxidants. However, when the balance between ROS generation and antioxidant capacity is disrupted in favor of the oxidants, an uncontrolled generation of ROS causes oxidative stress (OS) that adversely affects sperm morphology and functions through lipid peroxidation, DNA fragmentation, and apoptosis. This chapter emphasizes upon the endogenous generation of ROS in the male reproductive tract and their physiological roles in mediating sperm functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  PubMed  Google Scholar 

  2. Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health. 2017;11(4):1279–304.

    Article  PubMed  Google Scholar 

  3. Sengupta P, Borges E Jr, Dutta S, Krajewska-Kulak E. Decline in sperm count in European men during the past 50 years. Hum Exp Toxicol. 2018;37(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  4. Sengupta P, Dutta S, Tusimin MB, Irez T, Krajewska-Kulak E. Sperm counts in Asian men: reviewing the trend of past 50 years. Asian Pac J Reprod. 2018;7(2):87.

    Article  Google Scholar 

  5. Sengupta P, Nwagha U, Dutta S, Krajewska-Kulak E, Izuka E. Evidence for decreasing sperm count in African population from 1965 to 2015. Afr Health Sci. 2017;17(2):418–27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect. 1994;102(Suppl 10):5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sengupta P. Recent trends in male reproductive health problems. Asian J Pharm Clin Res. 2014;7(2):1–5.

    Google Scholar 

  8. Ayaz A, Agarwal A, Sharma R, Kothandaraman N, Cakar Z, Sikka S. Proteomic analysis of sperm proteins in infertile men with high levels of reactive oxygen species. Andrologia. 2018;50(6):e13015.

    Article  CAS  PubMed  Google Scholar 

  9. Bui A, Sharma R, Henkel R, Agarwal A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia. 2018;50(8):e13012.

    Article  CAS  PubMed  Google Scholar 

  10. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, Sadeghi MR. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol. 2018;16(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson A, Agarwal A, du Plessis SS. Physiological Role of Reactive Oxygen Species in Sperm Function: A Review. In: Parekatil SJ, Agarwal A (eds.), Antioxidants in Male Infertility: A Guide for Clinicians and Researchers. New York: Springer Science+Business Media; 2013. pp. 69–89.

    Google Scholar 

  12. Agarwal A, Aitken RJ, Alvarez JG. Studies on men’s health and fertility. In: Oxidative stress in applied basic research and clinical practice: New York, Dordrecht, Heidelberg, London: Springer Science and Business Media, LLC; 2012.

    Google Scholar 

  13. Ford W. Regulation of sperm function by reactive oxygen species. Hum Reprod Update. 2004;10(5):387–99.

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  15. Koppenol WH. The Haber-Weiss cycle–70 years later. Redox Rep. 2001;6(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  16. Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta-Bioenerg. 1999;1411(2–3):273–89.

    Article  CAS  Google Scholar 

  17. Halliwell B, Gutteridge JM. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986;246(2):501–14.

    Article  CAS  PubMed  Google Scholar 

  18. Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol. 1999;24(3):249–66.

    Article  CAS  PubMed  Google Scholar 

  19. Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  20. Chen SJ, Allam JP, Duan YG, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288(1):191–9.

    Article  CAS  PubMed  Google Scholar 

  21. Baker MA, Krutskikh A, Aitken RJ. Biochemical entities involved in reactive oxygen species generation by human spermatozoa. Protoplasma. 2003;221(1–2):145–51.

    Article  CAS  PubMed  Google Scholar 

  22. Ford WC, Whittington K, Williams AC. Reactive oxygen species in human sperm suspensions: production by leukocytes and the generation of NADPH to protect sperm against their effects. Int J Androl. 1997;20(Suppl 3):44–9.

    CAS  PubMed  Google Scholar 

  23. World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th edn. Cambridge: Cambridge University Press, 2010.

    Google Scholar 

  24. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B, Irvine S. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47(4):468–82.

    Article  CAS  PubMed  Google Scholar 

  26. Rengan AK, Agarwal A, van der Linde M, du Plessis SS. An investigation of excess residual cytoplasm in human spermatozoa and its distinction from the cytoplasmic droplet. Reprod Biol Endocrinol. 2012;10:92.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gavella M, Lipovac V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl. 1992;28(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  28. Du Plessis SS, Agarwal A, Halabi J, Tvrda E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet. 2015;32(4):509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gelain DP, Cammarota M, Zanotto-Filho A, de Oliveira RB, Dal-Pizzol F, Izquierdo I, Bevilaqua LR, Moreira JC. Retinol induces the ERK1/2-dependent phosphorylation of CREB through a pathway involving the generation of reactive oxygen species in cultured Sertoli cells. Cell Signal. 2006;18(10):1685–94.

    Article  CAS  PubMed  Google Scholar 

  30. Zanotto-Filho A, Schröder R, Moreira JCF. Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells. Free Radic Res. 2008;42(6):593–601.

    Article  CAS  PubMed  Google Scholar 

  31. Hipler U, Görnig M, Hipler B, Römer W, Schreiber G. Stimulation and scavestrogen-induced inhibition of reactive oxygen species generated by rat sertoli cells. Arch Androl. 2000;44(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  32. Stanczyk FZ. Estrogens: different types and properties. In: Lobo RA, Kelsey J, Marcus R, editors. Menopause biology and pathobiology. San Diego: Academic Press; 2000. p. 421–8.

    Google Scholar 

  33. Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online. 2006;12(5):630–3.

    Article  CAS  PubMed  Google Scholar 

  34. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res. 2009;129(4):357–67.

    CAS  PubMed  Google Scholar 

  35. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  36. Will MA, Swain J, Fode M, Sonksen J, Christman GM, Ohl D. The great debate: varicocele treatment and impact on fertility. Fertil Steril. 2011;95(3):841–52.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124–8.

    Article  PubMed  Google Scholar 

  38. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(2):1–10.

    Article  CAS  PubMed  Google Scholar 

  39. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dutta S, Majzoub A, Agarwal A. Oxidative stress and sperm function: a systematic review on evaluation and management. Arab J Urol. 2019;1:1–11.

    Google Scholar 

  41. Agarwal A, Desai NR, Ruffoli R, Carpi A. Lifestyle and testicular dysfunction: a brief update. Biomed Pharmacother. 2008;62(8):550–3.

    Article  PubMed  Google Scholar 

  42. Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16(1):10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas AJ Jr. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–9.

    Article  PubMed  Google Scholar 

  44. Wang M, Su P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: an update. Syst Biol Reprod Med. 2018;64(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  45. Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem Toxicol. 2013;36(3):353–68.

    Article  CAS  PubMed  Google Scholar 

  46. Sengupta P. Current trends of male reproductive health disorders and the changing semen quality. Int J Prev Med. 2014;5(1):1–5.

    PubMed  PubMed Central  Google Scholar 

  47. Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function – in sickness and in health. J Androl. 2012;33(6):1096–106.

    Article  CAS  PubMed  Google Scholar 

  48. Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86.

    Article  CAS  PubMed  Google Scholar 

  49. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  50. de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(Suppl 1):15–21.

    Article  CAS  PubMed  Google Scholar 

  51. Lundwall Å, Bjartell A, Olsson AY, Malm J. Semenogelin I and II, the predominant human seminal plasma proteins, are also expressed in non-genital tissues. Mol Hum Reprod. 2002;8(9):805–10.

    Article  CAS  PubMed  Google Scholar 

  52. Hamada A, Sharma R, Du Plessis SS, Willard B, Yadav SP, Sabanegh E, Agarwal A. Two-dimensional differential in-gel electrophoresis–based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99(5):1216–26. e2

    Article  CAS  PubMed  Google Scholar 

  53. Chatterjee S, Laloraya M, Kumar P. Free radical-induced liquefaction of ejaculated human semen: a new dimension in semen biochemistry. Arch Androl. 1997;38(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  54. du Plessis SS, Agarwal A, Mohanty G, Van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17(2):230.

    Article  CAS  PubMed  Google Scholar 

  55. Lindemann CB. Functional significance of the outer dense fibers of mammalian sperm examined by computer simulations with the geometric clutch model. Cell Motil Cytoskeleton. 1996;34(4):258–70.

    Article  CAS  PubMed  Google Scholar 

  56. Henkel RR, Defosse K, Koyro H-W, Weissmann N, Schill W-B. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility. Asian J Androl. 2003;5(1):3–8.

    CAS  PubMed  Google Scholar 

  57. Henkel R, Baldauf C, Bittner J, Weidner W, Miska W. Elimination of zinc from the flagella of spermatozoa during epididymal transit is important for motility. Reprod Technol. 2001;10(5):280–5.

    Google Scholar 

  58. De Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3(3):175–94.

    Article  PubMed  Google Scholar 

  59. Inaba K. Molecular architecture of the sperm flagella: molecules for motility and signaling. Zool Sci. 2003;20(9):1043–57.

    Article  CAS  Google Scholar 

  60. López-González I, Torres-Rodríguez P, Sánchez-Carranza O, Solís-López A, Santi C, Darszon A, Treviño C. Membrane hyperpolarization during human sperm capacitation. Mol Hum Reprod. 2014;20(7):619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J Androl. 1991;12(5):323–30.

    CAS  PubMed  Google Scholar 

  62. Breitbart H. Signaling pathways in sperm capacitation and acrosome reaction. Cell Mol Biol. 2003;49(3):321–8.

    CAS  PubMed  Google Scholar 

  63. Gil-Guzman E, Ollero M, Lopez M, Sharma R, Alvarez J, Thomas A Jr, Agarwal A. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16(9):1922–30.

    Article  CAS  PubMed  Google Scholar 

  64. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.

    CAS  PubMed  Google Scholar 

  65. Balhorn R. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93(2):298–305.

    Article  CAS  PubMed  Google Scholar 

  66. Saowaros W, Panyim S. The formation of disulfide bonds in human protamines during sperm maturation. Experientia. 1979;35(2):191–2.

    Article  CAS  PubMed  Google Scholar 

  67. Fujii J, Tsunoda S. Redox regulation of fertilisation and the spermatogenic process. Asian J Androl. 2011;13(3):420–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14(6):647–57.

    Article  CAS  PubMed  Google Scholar 

  69. Dona G, Fiore C, Tibaldi E, Frezzato F, Andrisani A, Ambrosini G, Fiorentin D, Armanini D, Bordin L, Clari G. Endogenous reactive oxygen species content and modulation of tyrosine phosphorylation during sperm capacitation. Int J Androl. 2011;34(5pt1):411–9.

    Article  CAS  PubMed  Google Scholar 

  70. Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017;84(10):1039–52.

    Article  CAS  PubMed  Google Scholar 

  71. Aitken RJ, Baker MA, Nixon B. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J Androl. 2015;17(4):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roldan E, Murase T, Shi Q-X. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science. 1994;266(5190):1578–81.

    Article  CAS  PubMed  Google Scholar 

  73. Khosrowbeygi A, Zarghami N. Fatty acid composition of human spermatozoa and seminal plasma levels of oxidative stress biomarkers in subfertile males. Prostaglandins Leukot Essent Fatty Acids. 2007;77(2):117–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S., Henkel, R., Sengupta, P., Agarwal, A. (2020). Physiological Role of ROS in Sperm Function. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics