Skip to main content

Epigenetics and Male Infertility

  • Chapter
  • First Online:
Male Infertility

Abstract

Epigenetics is the study of alterations in gene expression that do not involve changes to the underlying DNA sequence. Epigenetic changes are natural and common and are influenced by age, environment, lifestyle, and illness. Epigenetic modifications underlie normal development and also pathologic diseases such as cancer, autoimmunity, and infertility. Abnormal sperm epigenetic profiles appear to correlate not only with semen analysis parameters but also with reproductive competence as defined by embryo quality and miscarriage rates. Sperm epigenetic profiles also change with paternal age and are influenced by paternal lifestyle choices. As sperm epigenetic patterns are heritable, there is the potential for both intergenerational transmission of disease to offspring as well as transgenerational implications for grandchildren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    Article  CAS  PubMed  Google Scholar 

  2. Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: biology and clinical implication in the era of precision medicine. Semin Cancer Biol. 2018;51:22–35.

    Article  PubMed  Google Scholar 

  3. Sato N, Goggins M. Epigenetic alterations in intraductal papillary mucinous neoplasms of the pancreas. J Hepato-Biliary-Pancreat Surg. 2006;13(4):280–5.

    Article  Google Scholar 

  4. Ngollo M, Dagdemir A, Karsli-Ceppioglu S, Judes G, Pajon A, Penault-Llorca F, Boiteux JP, Bignon YJ, Guy L, Bernard-Gallon DJ. Epigenetic modifications in prostate cancer. Epigenomics. 2014;6(4):415–26.

    Article  CAS  PubMed  Google Scholar 

  5. Schenkel LC, Kernohan KD, McBride A, Reina D, Hodge A, Ainsworth PJ, Rodenhiser DI, Pare G, Berube NG, Skinner C, et al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin. 2017;10:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kraan CM, Godler DE, Amor DJ. Epigenetics of fragile X syndrome and fragile X-related disorders. Dev Med Child Neurol. 2019;61(2):121–7.

    Article  PubMed  Google Scholar 

  7. Kubota T, Miyake K, Hirasawa T. Role of epigenetics in Rett syndrome. Epigenomics. 2013;5(5):583–92.

    Article  CAS  PubMed  Google Scholar 

  8. Soejima H, Higashimoto K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J Hum Genet. 2013;58(7):402–9.

    Article  CAS  PubMed  Google Scholar 

  9. Butler MG. Prader-Willi syndrome: obesity due to genomic imprinting. Curr Genomics. 2011;12(3):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lalande M, Calciano MA. Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci. 2007;64(7–8):947–60.

    Article  CAS  PubMed  Google Scholar 

  11. Akbarian S. Epigenetic mechanisms in schizophrenia. Dialogues Clin Neurosci. 2014;16(3):405–17.

    PubMed  PubMed Central  Google Scholar 

  12. Ludwig B, Dwivedi Y. Dissecting bipolar disorder complexity through epigenomic approach. Mol Psychiatry. 2016;21(11):1490–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loke YJ, Hannan AJ, Craig JM. The role of epigenetic change in autism spectrum disorders. Front Neurol. 2015;6:107.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sanchez-Mut JV, Graff J. Epigenetic alterations in Alzheimer’s disease. Front Behav Neurosci. 2015;9:347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xiao G, Zuo X. Epigenetics in systemic lupus erythematosus. Biomed Rep. 2016;4(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ai R, Hammaker D, Boyle DL, Morgan R, Walsh AM, Fan S, Firestein GS, Wang W. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat Commun. 2016;7:11849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun AC. An epigenetic model for the origin of cancer. Q Rev Biol. 1981;56(1):33–60.

    Article  CAS  PubMed  Google Scholar 

  18. Waddington CH. The epigenotype. Int J Epidemiol. 1942;41(1):10.

    Article  Google Scholar 

  19. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63.

    Article  CAS  PubMed  Google Scholar 

  20. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1(2):76–80.

    Article  PubMed  Google Scholar 

  21. Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science. 2010;329(5992):643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44(4):569–74.

    Article  CAS  PubMed  Google Scholar 

  23. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Oliva R, Dixon GH. Vertebrate protamine gene evolution I. sequence alignments and gene structure. J Mol Evol. 1990;30(4):333–46.

    Article  CAS  PubMed  Google Scholar 

  25. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.

    Article  CAS  PubMed  Google Scholar 

  26. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.

    Article  CAS  PubMed  Google Scholar 

  27. Aoki VW, Liu L, Jones KP, Hatasaka HH, Gibson M, Peterson CM, Carrell DT. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86(5):1408–15.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    Article  PubMed  CAS  Google Scholar 

  29. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A, Platts AE, Saida M, Steger K, Tedder P, Miller D. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19(8):1338–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. Reproduction. 2012;143(6):727–34.

    Article  CAS  PubMed  Google Scholar 

  32. WHO. Laboratory manual for the examination an processing of human semen. 5th ed. Geneva: University Press; 2010. p. 1.

    Google Scholar 

  33. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8(1):e1364.

    Article  CAS  Google Scholar 

  34. Jodar M, Sendler E, Moskovtsev SI, Librach CL, Goodrich R, Swanson S, Hauser R, Diamond MP, Krawetz SA. Absence of sperm RNA elements correlates with idiopathic male infertility. Sci Transl Med. 2015;7(295):295re296.

    Article  CAS  Google Scholar 

  35. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive Medicine N. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013;19(6):604–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, Xu C, Yan W. Mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 2015;4(2):212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, Yeung WS. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109(2):490–4.

    Article  CAS  PubMed  Google Scholar 

  38. Bonache S, Mata A, Ramos MD, Bassas L, Larriba S. Sperm gene expression profile is related to pregnancy rate after insemination and is predictive of low fecundity in normozoospermic men. Hum Reprod. 2012;27(6):1556–67.

    Article  CAS  PubMed  Google Scholar 

  39. Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, Carrell DT. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015;104(6):1388–97.e1–5.

    Article  CAS  PubMed  Google Scholar 

  40. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2.

    Article  CAS  PubMed  Google Scholar 

  41. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94(5):1728–33.

    Article  CAS  PubMed  Google Scholar 

  42. Boissonnas CC, Abdalaoui HE, Haelewyn V, Fauque P, Dupont JM, Gut I, Vaiman D, Jouannet P, Tost J, Jammes H. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  43. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, Sasaki H, Yaegashi N, Arima T. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51.

    Article  CAS  PubMed  Google Scholar 

  44. Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 2007;2(12):e1289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, Cox KJ, Stanford JB, Porucznik CA, Carrell DT. Decreased fecundity and sperm DNA methylation patterns. Fertil Steril. 2016;105(1):51-57 e51–3.

    Article  CAS  Google Scholar 

  46. Denomme MM, McCallie BR, Parks JC, Booher K, Schoolcraft WB, Katz-Jaffe MG. Inheritance of epigenetic dysregulation from male factor infertility has a direct impact on reproductive potential. Fertil Steril. 2018;110(3):419–28. e411.

    Article  PubMed  Google Scholar 

  47. Eichenlaub-Ritter U. Genetics of oocyte ageing. Maturitas. 1998;30(2):143–69.

    Article  CAS  PubMed  Google Scholar 

  48. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10(7):e1004458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. D’Onofrio BM, Rickert ME, Frans E, Kuja-Halkola R, Almqvist C, Sjolander A, Larsson H, Lichtenstein P. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiat. 2014;71(4):432–8.

    Article  Google Scholar 

  50. Practice Committee of American Society for Reproductive Medicine; Practice Committee of Society for Assisted Reproductive Technology. Recommendations for gamete and embryo donation: a committee opinion. Fertil Steril. 2013;99(1):47–62.

    Article  Google Scholar 

  51. Jenkins TG, Aston KI, Cairns BR, Carrell DT. Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertil Steril. 2013;100(4):945–51.

    Article  CAS  PubMed  Google Scholar 

  52. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013;14(9):R102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ingerslev LR, Donkin I, Fabre O, Versteyhe S, Mechta M, Pattamaprapanont P, Mortensen B, Krarup NT, Barres R. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin Epigenetics. 2018;10:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Denham J, O’Brien BJ, Harvey JT, Charchar FJ. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics. 2015;7(5):717–31.

    Article  CAS  PubMed  Google Scholar 

  55. Donkin I, Barres R. Sperm epigenetics and influence of environmental factors. Mol Metab. 2018;14:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143(7):1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA, Reik W, Erkek S, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014;345(6198):1255903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Noble D, Jablonka E, Joyner MJ, Muller GB, Omholt SW. Evolution evolves: physiology returns to centre stage. J Physiol. 2014;592(11):2237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yatsenko AN, Turek PJ. Reproductive genetics and the aging male. J Assist Reprod Genet. 2018;35(6):933–41.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jenkins, T.G., Turek, P.J. (2020). Epigenetics and Male Infertility. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics