Skip to main content

evoRF: An Evolutionary Approach to Random Forests

  • Conference paper
  • First Online:
Intelligent Distributed Computing XIII (IDC 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 868))

Included in the following conference series:

Abstract

Machine Learning is a field in which significant steps forward have been taken in the last years, resulting in a wide variety of available algorithms, for many different problems. Nonetheless, most of these algorithms focus on the training of static models, in the sense that the model stops evolving after the training phase. This is increasingly becoming a limitation, especially in an era in which datasets are increasingly larger and may even arrive as sequential streams of data. Frequently retraining a model, in these scenarios, is not realistic. In this paper we propose evoRF: a combination of a Random Forest with an evolutionary approach. Its key innovative aspect is the evolution of the weights of the Random Forest over time, as new data arrives, thus making the forest’s voting scheme adapt to the new data. Older trees can also be replaced by newly trained ones, according to their accuracy, ensuring that the ensemble remains up to date without requiring a whole retraining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  2. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 28(1), 1–14 (1998)

    Article  Google Scholar 

  3. Singh, A., Thakur, N., Sharma, A.: A review of supervised machine learning algorithms. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1310–1315. IEEE (2016)

    Google Scholar 

  4. Gehrke, J., Ramakrishnan, R., Ganti, V.: Rainforest-a framework for fast decision tree construction of large datasets. VLDB 98, 416–427 (1998)

    Google Scholar 

  5. Ranka, S., Singh, V.: Clouds: a decision tree classifier for large datasets. In: Proceedings of the 4th Knowledge Discovery and Data Mining Conference, vol. 2, p. 8 (1998)

    Google Scholar 

  6. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  7. Biau, G., Scornet, E.: A random forest guided tour. Test 25(2), 197–227 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Carneiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos, D., Carneiro, D., Novais, P. (2020). evoRF: An Evolutionary Approach to Random Forests. In: Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., Ivanovic, M. (eds) Intelligent Distributed Computing XIII. IDC 2019. Studies in Computational Intelligence, vol 868. Springer, Cham. https://doi.org/10.1007/978-3-030-32258-8_12

Download citation

Publish with us

Policies and ethics