Skip to main content

Physics-Based Deep Neural Network for Augmented Reality During Liver Surgery

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11768))

Abstract

In this paper we present an approach combining a finite element method and a deep neural network to learn complex elastic deformations with the objective of providing augmented reality during hepatic surgery. Derived from the U-Net architecture, our network is built entirely from physically-based simulations of a preoperative segmentation of the organ. These simulations are performed using an immersed-boundary method, which offers several numerical and practical benefits, such as not requiring boundary-conforming volume elements. We perform a quantitative assessment of the method using synthetic and ex vivo patient data. Results show that the network is capable of solving the deformed state of the organ using only a sparse partial surface displacement data and achieve similar accuracy as a FEM solution, while being about 100\(\times \) faster. When applied to an ex vivo liver example, we achieve the registration in only 3 ms with a mean target registration error (TRE) of 2.9 mm.

J.-N. Brunet and A. Mendizabal—Contributed equally to the paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://pardiso-project.org.

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Plantefeve, R., et al.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44(1), 139–153 (2016)

    Article  Google Scholar 

  3. Clements, L.W., Chapman, W.C., Dawant, B.M., Galloway, R.L., Miga, M.I.: Robust surface registration using salient anatomical features for image-guided liver surgery: algorithm and validation. Med. Phys. 35(6Part1), 2528–2540 (2008)

    Article  Google Scholar 

  4. Haouchine, N., Dequidt, J., et al.: Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: ISMAR, pp. 199–208 (2013)

    Google Scholar 

  5. Suwelack, S., Röhl, S., Bodenstedt, S., Reichard, D., et al.: Physics-based shape matching for intraoperative image guidance. Med. Phys. 41(11), 111901 (2014)

    Article  Google Scholar 

  6. Alvarez, P., et al.: Lung deformation between preoperative CT and intraoperative CBCT for thoracoscopic surgery: a case study. In: Medical Imaging, vol. 10576D (2018)

    Google Scholar 

  7. Modrzejewski, R., Collins, T., Bartoli, A., Hostettler, A., Marescaux, J.: Soft-body registration of pre-operative 3D models to intra-operative RGBD partial body scans. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 39–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_5

    Chapter  Google Scholar 

  8. Peterlík, I., Duriez, C., Cotin, S.: Modeling and real-time simulation of a vascularized liver tissue. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 50–57. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_7

    Chapter  Google Scholar 

  9. Petit, A., Cotin, S.: Environment-aware non-rigid registration in surgery using physics-based simulation. In: ACCV - 14th Asian Conference on Computer Vision (2018)

    Google Scholar 

  10. Meier, U., López, O., Monserrat, C., et al.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77(3), 183–197 (2005)

    Article  Google Scholar 

  11. Marchesseau, S., Heimann, T., Chatelin, S., Willinger, R., Delingette, H.: Multiplicative Jacobian energy decomposition method for fast porous visco-hyperelastic soft tissue model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 235–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_29

    Chapter  Google Scholar 

  12. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23(2), 121–134 (2007)

    Article  MathSciNet  Google Scholar 

  13. Collins, T., Pizarro, D., Bartoli, A., Canis, M., Bourdel, N.: Real-time wide-baseline registration of the uterus in monocular laparoscopic videos. In: MICCAI (2013)

    Google Scholar 

  14. Heiselman, J.S., et al.: Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery. J. Med. Imag. 5(2), 021203 (2017)

    Article  Google Scholar 

  15. Petit, A., Lippiello, V., Siciliano, B.: Real-time tracking of 3D elastic objects with an RGB-D sensor. In: IROS, pp. 3914–3921 (2015)

    Google Scholar 

  16. Düster, A., et al.: The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197(45–48), 3768–3782 (2008)

    Article  MathSciNet  Google Scholar 

  17. Niroomandi, S., et al.: Real-time deformable models of non-linear tissues by model reduction techniques. Comput. Methods Programs Biomed. 91(3), 223–231 (2008)

    Article  Google Scholar 

  18. Cifuentes, A., et al.: A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem. Anal. Des. 12, 313–318 (1992)

    Article  Google Scholar 

  19. Benzley, S.E., et al.: A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In: 4th IMR, vol. 17, pp. 179–191 (1995)

    Google Scholar 

  20. Wang, E., Nelson, T., Rauch, R.: Back to elements-tetrahedra vs. hexahedra. In: Proceedings of the 2004 International ANSYS Conference (2004)

    Google Scholar 

  21. Miller, K., Lu, J.: On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J. Mech. Behav. Biomed. Mater. 27, 154–166 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by H2020-MSCA-ITN Marie Skłodowska-Curie Actions, Innovative Training Networks (ITN) - H2020 MSCA ITN 2016 GA EU project number 722068 High Performance Soft Tissue Navigation (HiPerNav).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Cotin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 3952 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brunet, JN., Mendizabal, A., Petit, A., Golse, N., Vibert, E., Cotin, S. (2019). Physics-Based Deep Neural Network for Augmented Reality During Liver Surgery. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11768. Springer, Cham. https://doi.org/10.1007/978-3-030-32254-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32254-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32253-3

  • Online ISBN: 978-3-030-32254-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics